捋顺Struck SVM------之--------sv选择准则前导篇

对struck SVM的理解,很关键的一点是对支持向量的选择过程的理解,最终模型的效果好不好,也取决于选择的sv是否具有代表性。这里,可以先把对第一幅图学习后得到的sv的情况打出来,从而从数据入手,一边提问题,一边解决问题,这其实就是理解作者思路的过程。

根据第一幅图得到10个sv:

  SV序号

SV结构

1

2

3

4

5

6

7

8

9

10

sv.b

4.6352

-0.53

-0.2418

-2.588

-0.5559

-0.5452

-0.0756

-0.0463

-0.0321

-0.0203

sv.spIndex

1

1

1

1

1

1

1

1

1

1

sv.y

1

31

32

41

36

40

20

29

23

37

sv.g

-1.0638

-1.0638

-1.0638

-1.0638

-1.0638

-1.0638

-1.0638

-1.0638

-1.0638

-1.0638

这些sv之间的Kernel(衡量了sv之间特征向量的相似度)构成的gKernelMatrix是这样的:



于是,从这两幅数据中,我们可以提出一些疑问:

①只有第1个sv是正sv,它的系数b>0。为啥?

②有没有发现后面9个负sv与正sv的相似度都比较大(都>0.45),为啥要从一堆sample中选出与正sv相似度比较高的作为负sv呢??

③第4个sv与第1个sv(也是唯一一个正sv)的相似度很大,高达0.8612,而且第4个sv的权重也比较大(b的绝对值)。说明第4个sv对于决策起到很重要的作用。但有个问题,第10个sv和正sv的相似度也很大,但10sv的系数b却很小,这是因为什么呢??(第4个sv是第41个sample,第10个sv是第37个sample,与真实目标重叠率都为0,而且眼肉看的话,其实特征情况相差也不大,但为什么第10个sv那么小呢??)

结构中的g到底是什么含义呢?

为了方便之后的观察,我们也打出这10个sv的图像内容以及与真实boundingbox的位置关系:


(其中,上图显示了当前sv与真实boundingbox的位置关系;下图表示了真实bounding box内的图像内容以及当前sv(左上角标出的是sample的序号)中的图像内容)


下面,我们开始解决这些疑问。

Struck:Structured Output Tracking with Kernels对应的matlab代码中有个很重要的变量g(指的是sample对应的特征向量的梯度),对应论文的这个公式:

Tip 1:为什么要找到g最小的sample作为负sv呢???

来看一下g的含义:


因为要找到g最小,理想情况是-learner_loss和-learner_evaluate都小,分开详细来看这两部分:

①-learner_loss小       当前sample与真实目标boundingbox的重叠率小

②在分析-learner_evaluate的大小与什么有关之前,先看一下learner_evaluate是怎么得到的,对应代码如下:

找到-learner_evaluate小的,也就是找到learner_evaluate即score大的。为了比较什么情况下learner_evaluate的值大,什么情况下learner_evaluate的值小,我们假设有两个sample:

(这里需要注意:正sv的系数b>0,负sv的系数b<0。)

Tip 2:由Tip1变为了为什么要找到与真实框重叠率低,且与真实框相似度高,与已经选出来的负sv特征相差大的作为负sv??

也许下面这幅图可以帮助我们更直观的理解:

即:两个sv之间相似度越大,它们之间的Kernel就越大。也就是Kernel值的大小代表了sv之间相似度。

对应的代码是:


这个smo算法和梯度g联系很密切,关乎到sv系数b的变化。

这里我们会考虑到,执行smo算法是在哪个过程中?论文中提到了三种不同的更新步骤:PROCESS NEW、PROCESSOLD、OPTIMIZE PROCESSES,在执行这几个更新过程选出正负sv的最后,都要通过smo算法来调整参数,它们的执行过程分别描述如下:

对这部分的理解:

添加正sv:真实目标框

添加负sv:当前g最小的sample

为了方便理解,我们始终把g看成两部分来分析,一部分和重叠率有关,一部分和与当前sv的相似度有关。通过之前对g的含义的分析,我们把对g的比较看做是重叠率以及相似度的比较。因为看了很长时间,要说g到底代表什么物理意义,好像并没有一个很合理的说法。

之前已经提到,g这样的:


所以,选出的作为负svsample是与真实框重叠少,但与真实框的特征相似,与负sv的特征相差大的



对这部分的理解:

选出“正”sv:当前g最小的sv 

   (注意上面的一句话: 这意味着这个最大化仅仅是从引用这个支持模式的支持向量中选择。 这里是“选出”,也就是说从之前已经选中作为 sv 的并且引用这个支持模式中的 sample 中选出一个作为当前的“正 sv ”,并没有添加新的 sample 作为正 sv 。但是,选中的这个正 sv 并不一定是那个真正的正 sv ,也可能出现把负 sv 选出来作为当前的“正” sv 的情况,这个可以通过后面的输出观察到,这就相当于在改变之前某个 sv 的系数,更新方式见 smo 算法,涉及到系数 b 增加和减小,增加和减小的程度,为啥要这样更新呢??这个问题在最后的准则总结中,会详细回答 ......


注意这里提到的“新过程和旧过程都能添加一个新的支持向量”,是指都会增加新的负 sv ,旧过程 并没有添加新的 sample 作为正 sv 。(具体解释见对旧过程的理解。)






第13步有个对g的更新过程,之前执著于研究g什么时候增大,什么时候减小。而且还想,为啥要把不是正sv的选出来“正sv”和负sv作为一对,进行更新呢?固定住每次都选出真实的正sv作为正sv不行吗?于是,我让每次进入smo算法时的ip都固定为当前支持模式中的真实目标框所在的sv,打出来这种方式下,第一幅得到的sv的情况如下:

 

     SV序号

SV结构

1

2

3

4

5

6

sv.b

5.1160

-1.5473

-0.8786

-2.3833

-0.2224

-0.0845

sv.spIndex

1

1

1

1

1

1

sv.y

1

31

32

41

40

36

sv.g

-1.3496

-0.8856

-0.9250

-1.3040

-1.3387

-1.3496



出现错误了:

在红色框圈出的那一步,第一个svg竟然成了最小的,后来想到不应该让每次进入smo算法时的ip都固定为当前支持模式中的真实目标框所在的sv,这样第一个sv的g还是在更新的。

后来想到,在smo中,应该不让第一个sv的g还更新,这样才能保证第一个sv的g始终是最大的。后来发现也错了,通过min_gradient计算出来的第一个sv的g已经不等于0了。也就是g一定要变,不能不变。我把焦点放在了那两个g的公式上,惊奇地发现,第13步那个对g的更新方式其实和前面讲到的的对g的计算的公式是一样的。

我把这两个计算公式的结果打出来,结果一看,果然是相同的,利用min_gradient计算出来的g与每次PROCESS之后进行的smo中对g的更新一致。





我在纸上写的那个supplemtary material,其实是struck的作者在论文里提到的推导材料。

哈哈,按现在问题就聚焦在b上啦~b的变化又是由lambdaU的大小决定着。lambdaU,它的大小是这样的:

 从一堆sample中选出一些作为sv的准则可以戳前一篇博客



评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值