职场经验-冯唐成事心法-读后感

一、沟通技巧

  • 倾听
  • 理解别人的诉求
  • 开放
  • 平等
  • 多条理
  • 少大言
  • 好的沟通环境,比如咖啡馆等非工作场合
  • 就事论事
  • 适当沟通时长
  • 客观
  • 专注交流过程
  • 少用口头禅
  • 不要有情绪
  • 金字塔原则
    • 一个中心点,三到七个论据
    • 每个论据可以继续作为中心点,继续拓展

二、带团队

  • 勤-身先士卒
  • 该放手时要放手
  • 维持好势能,生产力要保持高输出,不能全力输出
  • 钱+理想+精神

三、团队激励

  • 志存高远
  • 业绩可衡量,有短中长期目标
  • 组织扁平
  • 及时的业绩反馈
  • 结果管理,奖罚分明

四、建立信任

  • 信任 = ( 可信度 * 可靠度 * 可亲度) / 自私度
  • 总结:可信度是能力,可靠度和自私度是人品,可亲度是性格,所以人要正,专业素质到位,有亲和力

五、中层管理如何做

  • 不笨:熟知自己负责的事情的所有细节
  • 不怕死:不怕犯错
  • 不急功近利
  • 不惜力,努力工作

六、CEO工作内容

  • 找人
  • 找钱
  • 定方向

七、高管核心能力

  • 知人
  • 知事

八、避免团队油腻

  • 一把手有脑子
  • 分配好利益
  • 明确底线
  • 真诚沟通
  • 长期执行好制度

九、保持团队锐气

  • 寻找本性乐观、好胜的人加入团队
  • 有正反馈
  • 目标有挑战
  • 团队永远有事情做

十、如何看待公司制度

1、公司制度认知
  • 制定切实可行制度,避免制度难落地
  • 制度本质是协调(人员配合)与控制(风险)
2、制度制订
  • 首先确立运营、财务、人事这三项基本制度
  • 积攒问题,半年或一年针对问题调整一次
  • 二八原则,确保大部分人可以执行
  • 有亲有疏,多数团队成员按照制度合作,保留几个亲密无间即可

十一、开会

1、开会前
  • 会前5个W,what、when、who、where、why
  • 会议相关材料前一天同步与会人
  • 主讲人会前做好准备
  • 会邀会议前两三个小时再发一次
2、会议中
  • 参与要准时
  • 最好有主持人
    • 开场:目的、内容、流程、决策什么事情
    • 陌生人介绍
    • 会议纪要
  • 如果有争执,会议delay,后面再约时间,再开
3、会后
  • 监督执行好
  • 结果反馈

十二、如何招人喜欢

  • 诚心
  • 虚心

十三、跳槽

  • 三十五岁前重能力,三十五岁后重利益
  • 认真跟贵人处,贵人不在多,两三个足矣
  • 认识猎头,一两个足矣
  • 有行业名号

十四、体制内

  • 能成事
  • 懂事
  • 建立信任
  • 耐心
  • 跟对人
  • 不贪
  • 接受起伏

十五、知可为、知不可为

  • 顺势而为
  • 谨慎小心
  • 勤奋专心
  • 认命
  • 耐烦
  • 宽心
  • 甘于寂寞

十六、成事之人特点

  • 悲观的态度
  • 中庸平衡
  • 耐烦
  • 精力旺盛
  • 忍不住做事
  • 收敛
  • 挺上去

十七、建立好的上下级关系

  • 外貌搭配
  • 仪式感
  • 交流质量高
  • 行动
  • 少功利
  • 相互给予(礼物、发展背书等)
  • 不怕求人
  • 坦诚
  • 正面反馈
  • 交流不必太多

十九、运气

  • 平衡运气和努力
  • 持续做事
  • 保持焦虑
  • 天底下没有那么容易做的事情

二十、总结

  • 凡事顺天应人,顺着规律做事情
  • 对于结果,谋事在人,成事在天,认真去做,一次不行就两次,如果真的发现路径错了,那就调整策略,如果事情有违天道,那就不要做了
【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器模拟器的研究展开,重点介绍基于Matlab代码实现的四轴飞行器动力学建模与仿真方法。研究构建了考虑非线性特性的飞行器数学模型,涵盖姿态动力学与运动学方程,实现了三自由度(滚转、俯仰、偏航)的精确模拟。文中详细阐述了系统建模过程、控制算法设计思路及仿真结果分析,帮助读者深入理解四轴飞行器的飞行动力学特性与控制机制;同时,该模拟器可用于算法验证、控制器设计与教学实验。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及无人机相关领域的工程技术人员,尤其适合从事飞行器建模、控制算法开发的研究生和初级研究人员。; 使用场景及目标:①用于四轴飞行器非线性动力学特性的学习与仿真验证;②作为控制器(如PID、LQR、MPC等)设计与测试的仿真平台;③支持无人机控制系统教学与科研项目开发,提升对姿态控制与系统仿真的理解。; 阅读建议:建议读者结合Matlab代码逐模块分析,重点关注动力学方程的推导与实现方式,动手运行并调试仿真程序,以加深对飞行器姿态控制过程的理解。同时可扩展为六自由度模型或加入外部干扰以增强仿真真实性。
基于分布式模型预测控制DMPC的多智能体点对点过渡轨迹生成研究(Matlab代码实现)内容概要:本文围绕“基于分布式模型预测控制(DMPC)的多智能体点对点过渡轨迹生成研究”展开,重点介绍如何利用DMPC方法实现多智能体系统在复杂环境下的协同轨迹规划与控制。文中结合Matlab代码实现,详细阐述了DMPC的基本原理、数学建模过程以及在多智能体系统中的具体应用,涵盖点对点转移、避障处理、状态约束与通信拓扑等关键技术环节。研究强调算法的分布式特性,提升系统的可扩展性与鲁棒性,适用于多无人机、无人车编队等场景。同时,文档列举了大量相关科研方向与代码资源,展示了DMPC在路径规划、协同控制、电力系统、信号处理等多领域的广泛应用。; 适合人群:具备一定自动化、控制理论或机器人学基础的研究生、科研人员及从事智能系统开发的工程技术人员;熟悉Matlab/Simulink仿真环境,对多智能体协同控制、优化算法有一定兴趣或研究需求的人员。; 使用场景及目标:①用于多智能体系统的轨迹生成与协同控制研究,如无人机集群、无人驾驶车队等;②作为DMPC算法学习与仿真实践的参考资料,帮助理解分布式优化与模型预测控制的结合机制;③支撑科研论文复现、毕业设计或项目开发中的算法验证与性能对比。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注DMPC的优化建模、约束处理与信息交互机制;按文档结构逐步学习,同时参考文中提及的路径规划、协同控制等相关案例,加深对分布式控制系统的整体理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值