欧氏距离:
欧几里得度量定义欧几里得空间中,点 x = (x1,...,xn) 和 y = (y1,...,yn) 之间的距离为
向量 的自然长度,即该点到原点的距离为
- .
它是一个纯数值。在欧几里得度量下,两点之间直线最短。
马氏距离
马氏距离是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离。它是一种有效的计算两个未知样本集 的相似度的方法。与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者 是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度。 对于一个均值为,协方差矩阵为的多变量向量,其马氏距离为
马氏距离也可以定义为两个服从同一分布并且其协方差矩阵为的随机变量与的差异程度:
如果协方差矩阵为单位矩阵,马氏距离就简化为欧氏距离;如果协方差矩阵为对角阵,其也可称为正规化的欧氏距离。
其中是的标准差。
巴氏距离
在统计学中,巴氏距离(巴塔恰里雅距离 / Bhattacharyya distance)用于测量两离散概率分布。它常在分类中测量类之间的可分离性。在同一定义域X中,概率分布p和q的巴氏距离定义如下:其中(1)离散概率分布和(2)连续概率分布
BC是巴氏系数(Bhattacharyya coefficient)。
对于多维的正态分布
其中
具体可参见wikipedia上的信息
and 分别是分布的期望与协方差矩阵
,
- .