相似度属性之距离

欧氏距离:

欧几里得度量定义欧几里得空间中,点 x = (x1,...,xn) 和 y = (y1,...,yn) 之间的距离为

d(x,y):=\sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \cdots + (x_n-y_n)^2} = \sqrt{\sum_{i=1}^n (x_i-y_i)^2}

向量 \vec{x} 的自然长度,即该点到原点的距离为

\|\vec{x}\|_2 = \sqrt{|x_1|^2 + \cdots + |x_n|^2}.

它是一个纯数值。在欧几里得度量下,两点之间直线最短。

马氏距离

马氏距离是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离。它是一种有效的计算两个未知样本集 的相似度的方法。欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者 是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度。 对于一个均值为\mu = ( \mu_1, \mu_2, \mu_3, \dots , \mu_p )^T协方差矩阵\Sigma的多变量向量x = ( x_1, x_2, x_3, \dots, x_p )^T,其马氏距离为

D_M(x) = \sqrt{(x - \mu)^T \Sigma^{-1} (x-\mu)}

马氏距离也可以定义为两个服从同一分布并且其协方差矩阵为\Sigma的随机变量 \vec{x} \vec{y}的差异程度:

 d(\vec{x},\vec{y})=\sqrt{(\vec{x}-\vec{y})^T\Sigma^{-1} (\vec{x}-\vec{y})}

如果协方差矩阵为单位矩阵,马氏距离就简化为欧氏距离;如果协方差矩阵为对角阵,其也可称为正规化的欧氏距离

 d(\vec{x},\vec{y})=\sqrt{\sum_{i=1}^p  {(x_i - y_i)^2 \over \sigma_i^2}}

其中\sigma_ix_i标准差

巴氏距离

在统计学中,巴氏距离(巴塔恰里雅距离 / Bhattacharyya distance)用于测量两离散概率分布。它常在分类中测量类之间的可分离性

在同一定义域X中,概率分布p和q的巴氏距离定义如下:其中(1)离散概率分布和(2)连续概率分布
巴氏距离公式.JPG
BC是巴氏系数(Bhattacharyya coefficient)。
对于多维的正态分布

p_i=\mathcal{N}(\boldsymbol\mu_i,\,\boldsymbol\Sigma_i)

D_B={1\over 8}(\boldsymbol\mu_1-\boldsymbol\mu_2)^T \boldsymbol\Sigma^{-1}(\boldsymbol\mu_1-\boldsymbol\mu_2)+{1\over 2}\ln \,\left({\det \boldsymbol\Sigma \over \sqrt{\det \boldsymbol\Sigma_1 \, \det \boldsymbol\Sigma_2} }\right)
其中

\boldsymbol\mu_i and \boldsymbol\Sigma_i分别是分布的期望与协方差矩阵

\boldsymbol\Sigma={\boldsymbol\Sigma_1+\boldsymbol\Sigma_2 \over 2}.
具体可参见wikipedia上的信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值