transaction transaction transaction HDU - 6201

题目链接

是一道有很多种解法的题目,但我在场上是用DFS做的,交了两遍,第一遍ME,第二遍TE。今天补题时看了大佬的博客发现这道题目是有很多种解法,自己一种也没想不出来,有点弱啊。总结来说有三种一种是转化成最短路,第二种是树形DP,第三种是费用流。

1.最短路。以前做过一种自己加起点的题,场上想过是最短路,但无奈自己不会转化。

<1>加一个超级起点 0 和一个超级终点 n+1,0与每个城市相连,他们之间的边权值为0,n+1与每个城市相连,边权值也是0,然后把相连的城市的边权值改成 买卖所得利润 - 路费,因为会有负值,所以用Bellman-Ford算法跑一下最长路就可以了

#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <cstring>
#include <sstream>
#include <cmath>
#include <stack>
#include <map>
#define ll long long
#define ull unsigned long long
#define INF 0x3f3f3f3f
#define mod 1000000007;
using namespace std;

const int maxn = 100000 + 10;
struct Edge
{
    int from,to,dist;
    Edge(int f,int t,int d):from(f),to(t),dist(d){}
};
int n,m;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
int d[maxn];
int p[maxn];
int cnt[maxn];
int price[maxn];
void init()
{
    for(int i=0;i<=n+1;i++) G[i].clear();
    edges.clear();
}
void addedge(int from,int to,int dist)
{
    edges.push_back(Edge(from,to,dist));
    int p = edges.size();
    G[from].push_back(p - 1);
}
bool negativecycle(int s)
{
    queue<int> q;
    memset(inq,0,sizeof(inq));
    memset(cnt,0,sizeof(cnt));
    for(int i=0;i<=n+1;i++) d[i] = -INF;
    inq[s] = true,d[s] = 0,q.push(s);
    while(!q.empty())
    {
        int u = q.front(); q.pop();
        inq[u] = false;
        for(int i=0;i<(int)G[u].size();i++)
        {
            Edge &e = edges[G[u][i]];
            //printf("%d %d %d\n",e.to,d[e.to],d[u] + e.dist);
            if(d[e.to] < d[u] + e.dist)
            {
                d[e.to] = d[u] + e.dist;
                p[e.to] = G[u][i];
                if(!inq[e.to])
                {
                    q.push(e.to);
                    inq[e.to] = true;
                    if(++cnt[e.to] > n) return true;
                }
            }
        }
    }
    return true;
}
int main()
{
    int k;
    scanf("%d",&k);
    while(k--)
    {
        scanf("%d",&n);
        m = n - 1;
        init();
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&price[i]);
            addedge(0,i,0);
            //addedge(i,0,0);
            addedge(i,n+1,0);
            //addedge(n+1,i,0);
        }
        int a,b,c;
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            //printf("%d %d\n",price[b] - price[a] - c,price[a] - price[b] - c);
            addedge(a,b,price[b] - price[a] - c);
            addedge(b,a,price[a] - price[b] - c);
        }
        negativecycle(0);
        printf("%d\n",d[n+1]);
    }
    return 0;
}

<2>加一个超级起点 0 和一个超级终点 n+1,0与每个城市 i 相连,他们之间的边权值为 -price[i],代表买书的成本,n+1与每个城市 i 相连,边权值是price[i],代表卖书的钱,然后把相连的城市的边权值改成两城市距离的负值,同样因为会有负值,所以用Bellman-Ford算法跑一下最长路。

#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <cstring>
#include <sstream>
#include <cmath>
#include <stack>
#include <map>
#define ll long long
#define ull unsigned long long
#define INF 0x3f3f3f3f
#define mod 1000000007;
using namespace std;

const int maxn = 100000 + 10;
struct Edge
{
    int from,to,dist;
    Edge(int f,int t,int d):from(f),to(t),dist(d){}
};
int n,m;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
int d[maxn];
int p[maxn];
int cnt[maxn];
int price[maxn];
void init()
{
    for(int i=0;i<=n+1;i++) G[i].clear();
    edges.clear();
}
void addedge(int from,int to,int dist)
{
    edges.push_back(Edge(from,to,dist));
    int p = edges.size();
    G[from].push_back(p - 1);
}
bool negativecycle(int s)
{
    queue<int> q;
    memset(inq,0,sizeof(inq));
    memset(cnt,0,sizeof(cnt));
    for(int i=0;i<=n+1;i++) d[i] = -INF;
    inq[s] = true,d[s] = 0,q.push(s);
    while(!q.empty())
    {
        int u = q.front(); q.pop();
        inq[u] = false;
        for(int i=0;i<(int)G[u].size();i++)
        {
            Edge &e = edges[G[u][i]];
            //printf("%d %d %d\n",e.to,d[e.to],d[u] + e.dist);
            if(d[e.to] < d[u] + e.dist)
            {
                d[e.to] = d[u] + e.dist;
                p[e.to] = G[u][i];
                if(!inq[e.to])
                {
                    q.push(e.to);
                    inq[e.to] = true;
                    if(++cnt[e.to] > n) return true;
                }
            }
        }
    }
    return true;
}
int main()
{
    int k;
    scanf("%d",&k);
    while(k--)
    {
        scanf("%d",&n);
        m = n - 1;
        init();
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&price[i]);
            addedge(0,i,-price[i]);
            //addedge(i,0,0);
            addedge(i,n+1,price[i]);
            //addedge(n+1,i,0);
        }
        int a,b,c;
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            //printf("%d %d\n",price[b] - price[a] - c,price[a] - price[b] - c);
            addedge(a,b,-c);
            addedge(b,a,-c);
        }
        negativecycle(0);
        printf("%d\n",d[n+1]);
    }
    return 0;
}

<1><2>均需注意0与城市以及n+1与城市是单向路,城市与城市之间是双向路

2.树形DP还没学,学了以后来填坑

3.很抱歉,费用流也还没学,待填坑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值