何为赫夫曼树
- 给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree), 还有的书翻译为霍夫曼树。
- 赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近。
基本概念
- 路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1
- 结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积
- 树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL(weighted path length) ,权值越大的结点离根结点越近的二叉树才是最优二叉树。
- WPL最小的就是赫夫曼树
例如上图2中,构建的即为赫夫曼树。
构建方法
- 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
- 取出根节点权值最小的两颗二叉树
- 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
- 再将这颗新的二叉树,以根节点的权值大小参与排序,再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树
例如,以{13, 7, 8, 3, 29, 6, 1} 这个数组为例:
代码实现
代码已上传至GitHub
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class HuffmanTree {
private Node root;
private int order = 0;
/**
* 霍夫曼树的构建方法
* @param arr:这里我们传入的数组的元素就是每个节点的权值
*/
public void build(int[] arr){
// 把每个数据都当成节点
Node[] nodes = new Node[arr.length];
for (int i=0; i<arr.length; i++){
nodes[i] = new Node(arr[i]);
}
// 对权值进行排序
bubbleSort(nodes);
// 这里将数组转化为list,方便下面的删除操作
List<Node> list = new ArrayList<>(Arrays.asList(nodes));
while (list.size() > 1){
// 取出权值最小的两个节点,取出后从list中删除
Node left = list.get(0);
Node right = list.get(1);
list.remove(left);
list.remove(right);
// 将权值最小的两个节点组成一个树,根节点的权值为两节点的权值之和
root = new Node(left.val + right.val);
root.left = left;
root.right = right;
// 将新建的树即根节点,放进list中,并保持有序
int insert = 0;
for (int i=0; i<list.size(); i++){
if (root.val <= list.get(i).val){
break;
}
insert ++;
}
list.add(insert, root);
}
}
/**
* 冒泡排序,对Node数组按照权值排序
* @param arr
*/
public void bubbleSort(Node[] arr){
Node temp;
for (int n=0; n<arr.length; n++){
for (int i=1; i<arr.length-n; i++){
if (arr[i-1].val > arr[i].val){
temp = arr[i];
arr[i] = arr[i-1];
arr[i-1] = temp;
}
}
}
}
/**
* 中序遍历:打印整颗二叉树
*/
public void show(){
if (root == null){
System.out.println("二叉树为空!!!");
return;
}
showRecusion(root);
}
/**
* 打印的递归体
* @param node
*/
private void showRecusion(Node node){
// 一直向左递归,直到左叶子节点
if (node.left != null){
showRecusion(node.left);
}
// 然后开始回溯,打印父节点,接着打印右叶子节点,刚好符合二叉排序树的排序
System.out.println(String.format("第一个%d数值为:%d", order, node.val));
order ++;
if (node.right != null){
showRecusion(node.right);
}
}
public static void main(String[] args) {
HuffmanTree huffmanTree = new HuffmanTree();
int[] arr = {13, 7, 8, 3, 29, 6, 1};
huffmanTree.build(arr);
huffmanTree.show();
}
}
/**
* 节点类
*/
class Node{
public int val;
public Node left = null;
public Node right = null;
public Node(int val){
this.val = val;
}
}
欢迎关注同名公众号:“我就算饿死也不做程序员”。
交个朋友,一起交流,一起学习,一起进步。