使用Python进行数独求解(一)

1. 引言

本文为介绍流行的数独游戏的系列文章中的第一篇。更具体地说,我们如何构建一个脚本来解决数独难题,本文的重点在于介绍用于构建数独求解器的回溯算法。

在这里插入图片描述

数独这个名字的由来来自日语短语suuji wa dokushin ni kagiru,意思是“数字必须保持单一”。数独游戏的流行也源于其规则的简单性:数独游戏要求在 9 x 9 空间的网格上进行数字填写。在行和列中有 9 个“正方形”的格子block(由 3 x 3 个子单元格cell组成)。每一行、每一列、每一个block都需要填写数字 1-9,行、列、block内不得重复任何数字。

好的,知道了上述数独的规则,那么我们就来直接进入主体吧。 :)

2.描述数独九宫格

这一步主要为使用一组数字来初始化我们的九宫格。我们使用setBoard() 函数将输入转换为适合我们后续操作的数据类型。我们使用以下约定:

  • 空的单元格cell初始化为默认值0。
  • 维持数独谜题数字值的数据类型是一个 9x9 大小的二维列表。

这里我们的输入是一个多行字符串,我们将其处理成二维列表的形式。样例代码如下:

# Initialize a 2-D list with initial values described by the problem. 
# Returns board
def setBoard():
    board = list()
    sudokuBoard = '''
    200080300
	060070084
	030500209
	000105408
	000000000
	402706000
	301007040
	720040060
	004010003
	'''
    rows = sudokuBoard.split('\n')
    for row in rows:
        column = list()
        for character in row:
            digit = int(character)
            column.append(digit)
        board.append(column)
    return board

上述代码运行后,如果展示在拼图游戏中,他的样子大概如下:

在这里插入图片描述

3.寻找下一个空子单元格

函数findEmpty() 函数的操作更加简单:对初始化后的九宫格作为参数传递,然后该遍历该九宫格中每一个子单元格cell,直到找到返回的第一个空的子单元格。如果没有找到空的子单元格,这表明我们的问题已解决,因此它返回None
样例代码如下:

# Find next empty space in Sudoku board and return dimensions
def findEmpty(board):
    for row in range(9):
        for col in range(9):
            if board[row][col] == 0 :
                return row,col
    return None

4. 子单元格中设置值的合法性

函数isValid()的操作是确认设定的数字是否是九宫格子单元格的有效选项。为了使设置的值满足数独九宫格的要求,该值的设置需满足以下条件:

  • 同一行的任何子单元格cell都不应包含该数字
  • 同一列的任何子单元格cell都不应包含该数字
  • 该子单元格cell所在的block不应该包含该数字

如果我们设定的值满足以上所有条件,该函数返回True,否则返回False。代码如下:

# Check whether a specific number can be used for specific dimensions
def isValid(board, num, pos):
    row, col = pos
    # Check if all row elements include this number
    for j in range(9):
        if board[row][j] == num:
            return False
    # Check if all column elements include this number
    for i in range(9):
        if board[i][col] == num:
            return False
    # Check if the number is already included in the block
    rowBlockStart = 3* (row // 3)
    colBlockStart = 3* (col // 3)

    rowBlockEnd = rowBlockStart + 3
    colBlockEnd = colBlockStart + 3
    for i in range(rowBlockStart, rowBlockEnd):
        for j in range(colBlockStart, colBlockEnd):
            if board[i][j] == num:
                return False

    return True

以下是通过isValid() 函数中描述的条件后成功插入新值的动态示例:

在这里插入图片描述
同时,若我们引入一个与九宫格数独上已经存在的值冲突的数值,那么此时该值将不会被插入。图例如下:
在这里插入图片描述

5. 实现回溯算法

下一个函数是我们整个解决方案的核心思想,这里引入了回溯思想,该算法的实现步骤如下:

  • 搜索下一个空的子单元格cell。如果没有找到,那么我们已经解决了这个难题;如果没有,则转到第 2 步。
  • 通过迭代数字1-9 来猜测正确的数字,并参考已经确定的数字来检查它是否是一个合法的数字。
  • 如果找到一个有效的数字,此时递归调用solve() 函数并猜测下一个空的子单元格cell。
  • 如果数字1-9均无效,则将将子单元格cell的值重置为 0,并继续迭代以查找下一个有效数字。
# Solve Sudoku using backtracking
def solve(board):
    blank = findEmpty(board)
    if not blank:
        return True
    else:
        row, col = blank
    for i in range(1,10):
        if isValid(board, i, blank):
            board[row][col] = i

            if solve(board):
                return True

            board[row][col] = 0
    return False

由于递归理解起来不是那么直观,不妨让我们尝试使用动态来将整个过程形象化:
在这里插入图片描述

正如我们在上面的示例中看到的那样,该算法用有效数字填充空子单元格cell,直到出现死胡同;然后它回溯,直到重新迭代该过程。

6. 性能表现

上述我们的程序需要使用回溯算法来遍历每个单元格的许多潜在值。这当然不是最优的解法,可以预想到我们的解决方法的性能会很慢。
我们使用上述代码,来解决欧拉计划的第96题中的50道数独题目,运行时间为:

The execution time of above program is : 23.56185507774353 s

好吧,确实有点慢。我们后面再来开篇讲解数独算法的优化。

7. 总结

本文讲解了数独游戏的相关规则,以及如何在Python中利用回溯思想来一步一步解决数独问题,并给出了完整的实现。

您学废了吗?

参考
在这里插入图片描述
关注公众号《AI算法之道》,获取更多AI算法资讯。

Python中,解决数独游戏通常会采用递归回溯法(Backtracking)结合一些辅助的数据结构,如字典或集合来存储已经访问过的数字。以下是基本步骤: 1. **初始化**:创建一个9x9的二维列表表示数独网格,并用0填充初始空白格。 2. **递归函数**:定义一个名为`solve_sudoku`的函数,接收当前的数独矩阵作为输入。 3. **检查空格**:找到下一个空格(值为0),如果没有空格,则返回True表示已找到解决方案。 4. **尝试填入数字**:从1到9循环,看这个数字是否满足数独规则(在同一行、列和宫内都不重复)。如果满足,将该数字放入空格,然后递归调用`solve_sudoku`函数。 5. **如果无法继续**:尝试下一个数字,如果所有数字都试过还没有找到合法的解答,则回溯到上一步,移除刚刚填入的数字,继续寻找其他可能性。 6. **解决方案**:如果`solve_sudoku`返回True,说明找到了解决方案,输出完整的数独矩阵;否则,继续下一层搜索。 下面是简单的示例代码(注意这只是一个简化的版本,实际项目可能需要更复杂的错误处理和优化): ```python def is_valid(board, row, col, num): # 检查行 for i in range(9): if board[row][i] == num: return False # 检查列 for i in range(9): if board[i][col] == num: return False # 检查小宫格 start_row = (row // 3) * 3 start_col = (col // 3) * 3 for i in range(start_row, start_row + 3): for j in range(start_col, start_col + 3): if board[i][j] == num: return False return True def solve_sudoku(board): for row in range(9): for col in range(9): if board[row][col] == 0: for num in range(1, 10): if is_valid(board, row, col, num): board[row][col] = num if solve_sudoku(board): return True else: board[row][col] = 0 return False return True # 初始化一个空的数独网格 board = [[0 for _ in range(9)] for _ in range(9)] if not solve_sudoku(board): print("无法找到解") else: print(board) ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵卓不凡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值