内容均来自Standford公开课machine learning中Andrew老师的讲解.
针对线性回归模型,我们假设:hypothesis(x) = theta0 + theta1*x,(这里x是我们的样本值)
也就是上图的htheta(x),并且定义costFunction,就是上图的J(theta0,theta1),也就是要求theta0和theta1使得我们假设函数h(x)和样本真值(y)之间的平均误差最小,minJ(theta0,theta1)。
内容均来自Standford公开课machine learning中Andrew老师的讲解.
针对线性回归模型,我们假设:hypothesis(x) = theta0 + theta1*x,(这里x是我们的样本值)
也就是上图的htheta(x),并且定义costFunction,就是上图的J(theta0,theta1),也就是要求theta0和theta1使得我们假设函数h(x)和样本真值(y)之间的平均误差最小,minJ(theta0,theta1)。