Gradient Descent for Linear Regression,线性回归的梯度下降算法

这篇博客深入解析了线性回归模型中的梯度下降算法,通过Andrew老师的Stanford公开课内容,介绍了如何利用梯度下降求解线性回归的最优参数θ0和θ1。文章首先设定假设函数h(x) = θ0 + θ1*x,并定义成本函数J(θ0,θ1),目标是最小化h(x)与真实值y之间的平均误差。接着,博客详细阐述了初始化参数、计算成本函数的偏导数以及如何运用梯度下降法迭代更新θ0和θ1,直至收敛,从而得到最佳拟合直线的参数。此外,还配以直观的成本函数图形辅助理解。" 114555389,10539773,Java基础知识:数据类型与转换,"['Java基础知识', '数据类型', '变量声明', '类型转换']
摘要由CSDN通过智能技术生成

内容均来自Standford公开课machine learning中Andrew老师的讲解.


针对线性回归模型,我们假设:hypothesis(x) = theta0 + theta1*x,(这里x是我们的样本值)


也就是上图的htheta(x),并且定义costFunction,就是上图的J(theta0,theta1),也就是要求theta0和theta1使得我们假设函数h(x)和样本真值(y)之间的平均误差最小,minJ(theta0,theta1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值