概率论自学day1-集合论

  • 参考:统计推断
  • 仅自学使用,非商业用途。

1 概率论 Probability Theory

1.1 集合论 Set Theory

1.1.1 样本空间 Sample Space

  • 定义:在特定实验中,关于所有可能的结果的集合S。

    • 举例:抛硬币(tossing a coin)的两种结果(Heads and Tails),
      则有 S={H,T}
  • 分类:可数样本空间 和 不可数样本空间
    (countable VS uncountable)

    • 判定标准:一个样本空间中的元素能否与整数的一个子集一一对应
      (can be put into 1-1 correspondence)

      • 能——可数,例如抛硬币的结果(正面或背面)、成绩(70、80、90…)
      • 不能——不可数,例如正实数时长(1.5,2.3,6.99…)
      • 当然,如果样本空间中仅包含有限个数字的元素,那它一定可数。
  • 实践表明,关于不可数样本空间的概率和统计方法更为简洁。

    • (原话是’‘less cumbersome than those for countable sample spaces’’)但底下没有举例比较,BTW,这个结论先搁在这里吧……后面学到相关的再来填坑kkk

1.1.2 事件 Event

  • 定义:样本空间S的子集。[概念初高中都学过就不写了…]
  • 事件A与事件B的三种关系:
    • 并集 Union
    • 交集 Intersection
    • 补集 Complementation

1.1.3 举例-事件操作Event Operations

就是交并补的实际应用举例,过于简单就不写了…

1.1.4 定理

  • 交换律 Commutativity
  • 结合律 Associativity
  • 分配律 Distributive Laws
  • 德摩根律 DeMorgan’s Laws

1.1.4Theorem

  • 然后是对分配律的简单proof,看看就行。人生苦短,何必证明。
  • 交集和并集在无限集合的拓展运用(直接放实例,便于理解)
    1.1.4EXAMPLE

1.1.5 不相交集合 disjoint

1.1.6 分隔 partition

  • 如上图例,利用集合A=[i,i+1)建立[0,∞)的分隔。
  • 作用:将样本空间可以分成较小的不重叠的几块。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值