- 参考:统计推断
- 仅自学使用,非商业用途。
1 概率论 Probability Theory
1.1 集合论 Set Theory
1.1.1 样本空间 Sample Space
-
定义:在特定实验中,关于所有可能的结果的集合S。
- 举例:抛硬币(tossing a coin)的两种结果(Heads and Tails),
则有 S={H,T}
- 举例:抛硬币(tossing a coin)的两种结果(Heads and Tails),
-
分类:可数样本空间 和 不可数样本空间
(countable VS uncountable)-
判定标准:一个样本空间中的元素能否与整数的一个子集一一对应
(can be put into 1-1 correspondence)- 能——可数,例如抛硬币的结果(正面或背面)、成绩(70、80、90…)
- 不能——不可数,例如正实数时长(1.5,2.3,6.99…)
- 当然,如果样本空间中仅包含有限个数字的元素,那它一定可数。
-
-
实践表明,关于不可数样本空间的概率和统计方法更为简洁。
- (原话是’‘less cumbersome than those for countable sample spaces’’)但底下没有举例比较,BTW,这个结论先搁在这里吧……后面学到相关的再来填坑kkk
1.1.2 事件 Event
- 定义:样本空间S的子集。[概念初高中都学过就不写了…]
- 事件A与事件B的三种关系:
- 并集 Union
- 交集 Intersection
- 补集 Complementation
1.1.3 举例-事件操作Event Operations
就是交并补的实际应用举例,过于简单就不写了…
1.1.4 定理
- 交换律 Commutativity
- 结合律 Associativity
- 分配律 Distributive Laws
- 德摩根律 DeMorgan’s Laws
- 然后是对分配律的简单proof,看看就行。人生苦短,何必证明。
- 交集和并集在无限集合的拓展运用(直接放实例,便于理解)
1.1.5 不相交集合 disjoint
-
定义:若A∩B==Ø,则事件A和事件B是disjoint的。
-
即在Venn图中,集合无重叠部分。
-
两两互不相交 ( pairwise disjoint):
-
也叫并查集,拓展链接:
1.1.6 分隔 partition
- 如上图例,利用集合A=[i,i+1)建立[0,∞)的分隔。
- 作用:将样本空间可以分成较小的不重叠的几块。