Pytorch之torch.index_select()语法、参数和实际应用案例

torch.index_select 是 PyTorch 中用于从张量特定维度上按索引提取元素的函数。以下从功能、语法、应用案例、常见错误四个方面详细解析:
在这里插入图片描述

一、功能与语法

核心功能

从张量的指定维度(轴)上,根据给定的索引列表提取元素,生成新的张量。不改变原张量,返回新分配的内存。

语法
torch.index_select(input, dim, index, out=None) → Tensor
参数
  1. input:输入张量,必须是 PyTorch 张量。
  2. dim:整数,表示要索引的维度(轴)。例如:
    • dim=0 表示按行索引(对二维张量)。
    • dim=1 表示按列索引(对二维张量)。
  3. index:一维张量(必须是 LongTensor 类型),包含要提取的索引值。
  4. out(可选):输出张量,用于存储结果。

二、6个实际应用案例

案例1:从矩阵中选择特定行
import torch

# 创建3×3矩阵
x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 选择第0行和第2行
indices = torch.tensor([0, 2])  # 必须是LongTensor
result = torch.index_select(x, dim=0, index=indices)

print(result)
# 输出:
# tensor([[1, 2, 3],
#         [7, 8, 9]])
案例2:从批量数据中提取特定样本

在深度学习中,从批量数据(batch_size, channels, height, width)中选择特定样本:

# 假设batch_size=4,每个样本是3通道的28×28图像
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王国平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值