深度学习论文: DeepShift: Towards Multiplication-Less Neural Networks

DeepShift提出一种创新方法,使用按位移位和求反运算替代传统乘法,显著降低神经网络计算成本。该方法适用于全连接和卷积层,并在MNIST、CIFAR10和ImageNet数据集上验证了其有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DeepShift: Towards Multiplication-Less Neural Networks
PDF: https://arxiv.org/pdf/1905.13298.pdf
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

DeepShift 用移位和求反运算代替乘法,可有效缓解计算成本过高的问题.

1 DeepShift Networks

1-1 bit-wise shift (按位移位)

如果输入数字的基本二进制表示形式A为整数或固定点格式,则向左(或右)的逐位移位在数学上等效于将其乘以2的正s(或负s次幂):
在这里插入图片描述

1-2 negation operation (求反运算)

求反运算在数学公式 :
在这里插入图片描述

1-3 DeepShift原理示意图

用按位移位和位取反来代替乘法示意图
在这里插入图片描述

2 LinearShift Operator (全连接移位)

基于矩阵运算的全连接算子的前向传播 (forward pass)
在这里插入图片描述
全连接算子的反向传播(backward pass)
在这里插入图片描述
全连接移位算子(shift linear operator)
在这里插入图片描述

3 ConvShift Operator (卷积移位)

基于矩阵运算的卷积算子的前向传播 (forward pass)
在这里插入图片描述
卷积算子的反向传播(backward pass)
在这里插入图片描述
卷积移位算子(shift convolution operator)
在这里插入图片描述

4 实验对比

4-1 MNIST数据集对比测试结果

在这里插入图片描述

4-2 CIFAR10数据集对比测试结果

在这里插入图片描述

4-3 ImageNet数据集对比测试结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mingo_敏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值