OpenVINO 2022.3之九:Post-training Optimization Tool (POT)

OpenVINO 2022.3之九:Post-training Optimization Tool (POT)

Post-training Optimization Tool (POT) 通过在已训练好的模型上应用量化算法,将模型的权重和激活函数从 FP32/FP16 的值域映射到 INT8 的值域中,从而实现模型压缩,以降低模型推理所需的计算资源和内存带宽,进一步提高模型的推理性能。不同于 Quantization-aware Training(QAT) 方法,POT在不需要对原模型进行 fine-tuning 的情况下进行量化,也能得到精度较好的 INT8 模型,因此广泛地被应用于工业界的量化实践中。

在这里插入图片描述

POT提供了两种量化算法: Default QuantizationAccuracy-aware Quantization

  • Default Quantization (DQ) 提供了一种快速的量化方法,量化后的模型在大多数情况下能够提供较好的精度,适合作为模型 INT8 量化的 baseli

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mingo_敏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值