深度学习论文: Raising the Ceiling: Conflict-Free Local Feature Matching with Dynamic View Switching
Raising the Ceiling: Conflict-Free Local Feature Matching with Dynamic View Switching
PDF:https://arxiv.org/pdf/2407.07789
PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks
1 概述
目前的特征匹配方法主要致力于提升模型的匹配能力,以更精确地接近理论最佳匹配结果,即所谓的“上限”。但这些改进并未解决影响真实匹配效果的根本问题,例如小尺寸图像中匹配点的缺乏、密集匹配方法中的冲突,以及稀疏匹配方法对关键点可重复性的依赖。
本文提出了一种创新的特征匹配方法RCM(提升匹配上限),它从三个方面改进了匹配效果: