深度学习论文: Raising the Ceiling: Conflict-Free Local Feature Matching with Dynamic View Switching

深度学习论文: Raising the Ceiling: Conflict-Free Local Feature Matching with Dynamic View Switching
Raising the Ceiling: Conflict-Free Local Feature Matching with Dynamic View Switching
PDF:https://arxiv.org/pdf/2407.07789
PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

目前的特征匹配方法主要致力于提升模型的匹配能力,以更精确地接近理论最佳匹配结果,即所谓的“上限”。但这些改进并未解决影响真实匹配效果的根本问题,例如小尺寸图像中匹配点的缺乏、密集匹配方法中的冲突,以及稀疏匹配方法对关键点可重复性的依赖。
在这里插入图片描述
本文提出了一种创新的特征匹配方法RCM(提升匹配上限),它从三个方面改进了匹配效果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mingo_敏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值