供应链数据分析,涉及计划,采购,制造,仓储物流,俗称M4。供应链数据最大的特征是数据多维化,系统来源多元化,需要多维度深度钻取数据,一般要通过数据BI看板来体现。可视化只是数据整理和数据建模后的呈现形式,核心是数据获取的方式、如何数据清洗和数据建模。下面以库存控制看板为例给大家分享下供应链数据分析可视化到底要做成什么样的。
上述案例是供应链行业库存分析的经典案例,可以从多个仓库维度分析各个品类、各个产品的进销存情况、库存周转天数、动销、滞销情况,并且提供库存预警状态,便于及时补货。
供应链数据分析,涉及计划,采购,制造,仓储物流,俗称M4。供应链数据最大的特征是数据多维化,系统来源多元化,需要多维度深度钻取数据,一般要通过数据BI看板来体现。可视化只是数据整理和数据建模后的呈现形式,核心是数据获取的方式、如何数据清洗和数据建模。下面以库存控制看板为例给大家分享下供应链数据分析可视化到底要做成什么样的。
上述案例是供应链行业库存分析的经典案例,可以从多个仓库维度分析各个品类、各个产品的进销存情况、库存周转天数、动销、滞销情况,并且提供库存预警状态,便于及时补货。