ARIMA模型全称为自回归差分移动平均模型(Autoregressive Integrated Moving Average Model)。ARIMA模型主要由三部分构成,分别为自回归模型(AR)、差分过程(I)和移动平均模型(MA)。
MA模型的基本思想是:大部分时候时间序列应当是相对稳定的。在稳定的基础上,每个时间点上的标签值受过去一段时间内、不可预料的各种偶然事件影响而波动。即在一段时间内,时间序列应该是围绕着某个均值上下波动的序列,时间点上的标签值会围绕着某个均值移动,因此模型才被称为“移动平均模型 Moving Average Model”均值稳定:时间序列的均值或期望值是恒定的,不随时间变化。这就是公式中的μ项,它对所有时间点都是相同的。这也是为什么会说“时间序列应该是围绕着某个均值上下波动的序列”。在许多实际的时间序列分析中,我们可能需要通过一些预处理步骤(如差分或去趋势)将原始时间序列转换为均值稳定的序列。
方差稳定:时间序列的方差也是恒定的,不随时间变化。换句话说,时间序列的波动程度是一致的,不会在不同的时间点表现出明显的扩大或缩小。在MA模型中,这个特性主要由白噪声项 𝜖𝑡 来保证,因为白噪声的方差是常数。
无自相关:在理想的MA模型中,不同时间点的观察值之间没有自相关性。这意味着过去的值不能用来预测未来的值,除非你考虑到了白噪声项。这就是为什么会说“每个时间点上的标签值受过去一段时间内、不可预料的各种偶然事件影响而波动”。
1、MA模型的前提假设
移动平均模型(MA)的基本假设可以从以下几个方面来理解:
(1)平稳性:MA模型假设时间序列是平稳的。这意味着序列的主要统计属性,如均值和方差,不随时间变化。这个假设强调了序列在长期内保持稳定的行为,而在短期内可能会受到随机因素的影响。
(2)白噪声:MA模型假设存在一个白噪声序列。白噪声是随机误差项,它的均值为0,方差为常数,且各个时间点上的值是相互独立的。这个假设强调了在一段较短的时间内,时间序列的波动可能受到不可预测的随机因素的影响。
(3)线性:MA模型假设时间序列可以被过去的白噪声项的线性组合表示。这就是模型被称为“移动平均”模型的原因,因为它的预测值是过去白噪声的加权平均。
(4)有限历史影响:MA模型假设只有过去的q个白噪声才对当前时间点的值有影响,其中q是模型的阶数。换句话说,过去更久的白噪声对当前值没有直接影响。
2. ARIMA模型的由来
首先,我们要了解为什么需要把AR模型和MA模型合并为ARIMA模型。这就需要我们从这两种模型的优缺点出发。
AR模型,即自回归模型,其优势是对于具有较长历史趋势的数据,AR模型可以捕获这些趋势,并据此进行预测。但是AR模型不能很好地处理某些类型的时间序列数据,例如那些有临时、突发的变化或者噪声较大的数据。AR模型相信“历史决定未来”,因此很大程度上忽略了现实情况的复杂性、也忽略了真正影响标签的因子带来的不可预料的影响。
相反地,MA模型,即移动平均模型,可以更好地处理那些有临时、突发的变化或者噪声较大的时间序列数据。但是对于具有较长历史趋势的数据,MA模型可能无法像AR模型那样捕捉到这些趋势。MA模型相信“时间序列是相对稳定的,时间序列的波动是由偶然因素影响决定的”,但现实中的时间序列很难一直维持“稳定”这一假设。
基于以上两个模型的优缺点,我们引入了ARIMA模型,这是一种结合了AR模型和MA模型优点的模型,可以处理更复杂的时间序列问题。
3. ARIMA模型的基本概念
3.1 ARIMA模型的基本思想
ARIMA模型全称为自回归差分移动平均模型(Autoregressive Integrated Moving Average Model)。ARIMA模型主要由三部分构成,分别为自回归模型(AR)、差分过程(I)和移动平均模型(MA)。
ARIMA模型的基本思想是利用数据本身的历史信息来预测未来。一个时间点上的标签值既受过去一段时间内的标签值影响,也受过去一段时间内的偶然事件的影响,这就是说,ARIMA模型假设:标签值是围绕着时间的大趋势而波动的,其中趋势是受历史标签影响构成的,波动是受一段时间内的偶然事件影响构成的,且大趋势本身不一定是稳定的
简而言之,ARIMA模型就是试图通过数据的自相关性和差分的方式,提取出隐藏在数据背后的时间序列模式,然后用这些模式来预测未来的数据。其中:
1、AR部分用于处理时间序列的自回归部分,它考虑了过去若干时期的观测值对当前值的影响。
2、I部分用于使非平稳时间序列达到平稳,通过一阶或者二阶等差分处理,消除了时间序列中的趋势和季节性因素。
3、MA部分用于处理时间序列的移动平均部分,它考虑了过去的预测误差对当前值的影响。
结合这三部分,ARIMA模型既可以捕捉到数据的趋势变化,又可以处理那些有临时、突发的变化或者噪声较大的数据。所以,ARIMA模型在很多时间序列预测问题中都有很好的表现。