11种方法判断​软件的安全可靠性​

软件的安全可靠性是衡量软件好坏的一个重要标准,安全性指与防止对程序及数据的非授权的故意或意外访问的能力有关的软件属性,可靠性指与在规定的一段时间和条件下,软件

  软件的安全可靠性是衡量软件好坏的一个重要标准,安全性指与防止对程序及数据的非授权的故意或意外访问的能力有关的软件属性,可靠性指与在规定的一段时间和条件下,软件能维持其性能水平能力有关的一组属性。具体我

  们可以从以下几个方面来判断:

  1.用户权限限制。软件是否按功能模块划分用户权限,权限划分是否合理,考察超级用户对各个用户的权限管理是否合理,包括修改用户的登录资料等。

  2.用户和密码封闭性。软件对用户名和密码有无校验,有无保护措施,尤其对密码有无屏蔽功能。

  3.系统对用户错误登录的次数限制。软件对用户错误登录有无次数限制,一般做法是连续三次登录失败就退出系统。

  4.留痕功能。软件是否提供操作日志,比如某用户登录的时间,查询、修改或删除的动作以及离开的时间等。

  5.屏蔽用户操作错误。考察对用户常见的误操作的提示和屏蔽情况,例如可否有效避免日期的录入错误或写入无效的日期。

  6.错误提示的准确性。当用户操作错误或软件发生错误时,能否有准确清晰的提示,使用户知道造成错误的原因。例如当用户未输入完有效信息时存盘,系统应当给出关于未输入项的提示。

  7.错误是否导致系统异常退出。考察软件运行的稳定性,当软件发生一般错误或严重错误时,软件是否会自动退出。

  8.数据备份与恢复手段。主要针对有数据存储需要的软件,有的软件依靠数据库操作系统本身的备份与恢复机制,这需要用户具备一定的操作知识;好的软件会提供备份与恢复的操作,不需要用户直接对数据库系统进行操作。

  9.输入数据有效性检查。当用户输入的数据有错时,软件应能判断数据的有效性,避免无效数据的生成。

  10.异常情况的影响。在程序运行过程中进行掉电等试验,考查数据和系统的受影响程度;若受损,是否提供补救工具,补救的情况如何。

  11.网络故障对系统的影响。当网络中断连接时,是否会造成数据的丢失。

  以上一些方面是中国软件评测中心在大量的软件测试实践中提炼出来的比较有共性的项目,对于不同类型的软件,在安全可靠性方面还有更多的评测指标,并且依据实际情况侧重点有所不同。

学习上

作为一个软件测试的过来人,我想尽自己最大的努力,帮助每一个伙伴都能顺利找到工作。所以我整理了下面这份资源,现在免费分享给大家,有需要的小伙伴可以关注【公众号:开心螺蛳粉】自提!

软件测试面试文档

我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。在这里插入图片描述

在这里插入图片描述

行动吧,在路上总比一直观望的要好,未来的你肯定会感谢现在拼搏的自己!如果想学习提升找不到资料,没人答疑解惑时,请及时加入群:1150305204,里面有各种测试开发资料和技术可以一起交流哦。

<think>好的,我需要帮助用户了解“相对论平均GAN”(Relative Average GAN)的概念、原理和实现方法。首先,我得确认这个术语的正确性和相关背景。GAN,即生成对抗网络,是Ian Goodfellow在2014年提出的,由生成器和判别器组成,通过对抗训练来生成数据。用户提到的“相对论平均GAN”可能是指某种改进的GAN变体,结合了相对论或平均策略的优化方法。 首先,我应该查找是否有相关的论文或资料提到过“Relative Average GAN”。回想一下,GAN的变体有很多,比如WGAN、LSGAN、Relativistic GAN等。其中,Relativistic GAN(RGAN)是由Alexia Jolicoeur-Martineau在2018年提出的,其核心思想是让判别器比较真实样本和生成样本的相对真实性,而不是绝对判断。这可能就是用户所指的“相对论平均GAN”中的“相对”部分。至于“平均”,可能是指在损失函数中采用平均操作,如平均判别器输出或其他平均策略。 接下来,需要理清RGAN的原理。传统的GAN中,判别器评估单个样本的真实性,而RGAN的判别器评估的是真实样本相对于生成样本的相对真实性。例如,判别器可能被设计为$D(x_r, x_f) = \sigma(C(x_r) - \mathbb{E}[C(x_f)])$,其中$C$是判别器的原始输出,$\sigma$是sigmoid函数,$x_r$是真实样本,$x_f$是生成样本。这样,判别器不再单独判断每个样本,而是比较两者的差异,从而提升生成器的表现。 然后,关于“平均”部分,可能是指在训练过程中对多个样本的判别器输出进行平均,以稳定训练。例如,Relativistic average GAN(RaGAN)是RGAN的一个扩展,它使用平均来替代单个样本的比较。具体来说,判别器的目标函数可能变为最大化真实样本的平均判别结果与生成样本的平均判别结果之间的差异。这样的设计可以减少训练中的不稳定性,这是GAN常见的问题。 接下来,需要整理实现方法。RGAN或RaGAN的实现通常需要修改判别器的损失函数。例如,在传统的GAN中,生成器的损失可能是让生成的样本被判别器判定为真,而在RGAN中,生成器需要让生成的样本相对于真实样本更接近。具体来说,判别器的损失函数可能包括真实样本相对于生成样本的平均得分,以及生成样本相对于真实样本的平均得分。这需要调整判别器和生成器的目标函数。 在代码实现方面,可以参考现有的GAN框架,如PyTorch或TensorFlow,并修改判别器的计算方式。例如,在PyTorch中,可以计算真实数据和生成数据的判别器输出,然后计算它们的平均值,进而构建相对损失。生成器的损失则基于这些相对比较的结果。 用户可能还希望了解这种方法的优势,比如提升生成质量、训练稳定性等。此外,可能需要提到相关的应用场景,如图像生成、数据增强等。 最后,需要确保回答符合用户的要求,包括正确使用LaTeX格式,生成相关问题,引用相关文献。根据用户提供的引用,引用[1]提到强化学习,可能与GAN的结合应用有关,但需要确认是否有直接关联。引用[2]是关于作者的,可能不直接相关,但如果有相关的GAN论文由这些作者提出,可能需要提及。不过根据现有信息,可能主要依赖外部文献,如RGAN的原始论文或其他可靠来源。 总结,回答的结构应包括:概念解释(相对论平均GAN的定义)、原理(与传统GAN的对比,损失函数的变化)、实现方法(代码示例或步骤),以及相关问题。</think>### 相对论平均GAN(Relativistic Average GAN)解析 #### 概念 相对论平均GAN(RaGAN)是生成对抗网络(GAN)的一种改进方法,属于**相对论GAN**的扩展[^1]。其核心思想是让判别器(Discriminator)通过**比较真实样本与生成样本的相对差异**进行训练,而非传统GAN中单独判断单个样本的真实性。这种方法通过引入**平均判别值**来增强训练稳定性,提升生成质量。 #### 原理 1. **相对论判别机制** 传统GAN的判别器输出为单个样本的“真实性”概率,而RaGAN的判别器输出为**真实样本与生成样本的相对概率差**。例如,判别器的目标函数可表示为: $$ D(x_r, x_f) = \sigma\left( C(x_r) - \mathbb{E}[C(x_f)] \right) $$ 其中: - $x_r$为真实样本,$x_f$为生成样本; - $\sigma$为sigmoid函数; - $C(\cdot)$为判别器的原始输出; - $\mathbb{E}[\cdot]$表示期望(批量样本的平均值)。 2. **平均操作** RaGAN进一步引入**平均判别值**,例如: - 真实样本的判别值取批量数据的平均:$\mathbb{E}[C(x_r)]$; - 生成样本的判别值同理:$\mathbb{E}[C(x_f)]$; - 判别器需最大化$\mathbb{E}[C(x_r)] - \mathbb{E}[C(x_f)]$,而生成器需最小化该差值。 3. **损失函数** - **判别器损失**: $$ \mathcal{L}_D = -\mathbb{E}[\log(D(x_r, x_f))] - \mathbb{E}[\log(1 - D(x_f, x_r))] $$ - **生成器损失**: $$ \mathcal{L}_G = -\mathbb{E}[\log(D(x_f, x_r))] - \mathbb{E}[\log(1 - D(x_r, x_f))] $$ #### 实现方法(PyTorch示例) ```python import torch import torch.nn as nn # 判别器损失函数 def discriminator_loss(real_scores, fake_scores): real_scores_mean = torch.mean(real_scores) fake_scores_mean = torch.mean(fake_scores) # 计算相对差异 d_real = torch.sigmoid(real_scores_mean - fake_scores_mean) d_fake = torch.sigmoid(fake_scores_mean - real_scores_mean) loss = -torch.log(d_real + 1e-8) - torch.log(1 - d_fake + 1e-8) return loss.mean() # 生成器损失函数 def generator_loss(real_scores, fake_scores): real_scores_mean = torch.mean(real_scores) fake_scores_mean = torch.mean(fake_scores) # 生成器希望生成样本的判别值更接近真实样本 g_loss = -torch.log(torch.sigmoid(fake_scores_mean - real_scores_mean) + 1e-8) return g_loss.mean() ``` #### 优势与应用 - **优势**:缓解模式崩溃(Mode Collapse),提升生成样本多样性;训练过程更稳定。 - **应用**:图像生成、风格迁移、数据增强等。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值