Tensorflow(r1.5)_Anaconda _win10 安装教程

网上好多鱼龙混杂的教程,真是受不了,都写的不太全面和适用自己,所以自己整理一下安装步骤,方便新手入门。英文好的话也可以自己去官方网站上一步步看安装步骤,地址贴给大家,大家一定要记住,下面这个是官方的链接,一定要认真仔细看,没耐心的话看我文章就可以安装好了。

https://www.tensorflow.org/install/install_windows

1.在Windows上安装TensorFlow
其实说的是,tensorflow在windows / win 10上的安装的平台要求:
本文章将介绍如何在Windows上安装TensorFlow。 尽管这些说明也可能适用于其他Windows变体,但我们仅在满足以下要求的机器上测试(并且仅支持)这些说明:
64位,x86台式机或笔记本电脑
Windows 7或更高版本

2.确定要安装哪个TensorFlow
您必须选择以下某种类型的TensorFlow进行安装:

仅支持CPU的TensorFlow
如果您的系统没有NVIDIA®(英伟达™)GPU,则必须安装此版本。请注意,此版本的TensorFlow通常更容易安装(通常在5或10分钟内),所以即使您拥有NVIDIA GPU,我们也建议首先安装此版本
支持GPU的TensorFlow
TensorFlow程序通常在GPU上比在CPU上运行速度快得多。因此,如果您的系统具有满足以下所示先决条件的NVIDIA®GPU,并且需要运行性能关键型应用程序,则最终应安装此版本。

3.使用GPU支持运行TensorFlow的要求
如果您使用本指南中描述的机制之一安装支持GPU的TensorFlow,则必须在您的系统上安装以下NVIDIA软件:

如果您有一个前述软件包的版本不同,请更改为指定的版本。特别是,cuDNN版本必须完全匹配:如果无法找到cuDNN64_6.dll,则不会加载TensorFlow。要使用不同版本的cuDNN,您必须从源代码构建。

自己在 电脑->管理->设备管理器->显示适配器 里面查看自己显卡的型号。
设备管理器

找到之后

4.确定如何安装TensorFlow
您必须选择安装TensorFlow的机制。 支持的选择如下:

"native" pip

Anaconda
  • 本地pip直接在您的系统上安装TensorFlow,而无需通过虚拟环境。 由于本地pip安装不在单独的容器中,因此pip安装可能会干扰系统上的其他基于Python的安装。 但是,如果您了解pip和Python环境,则本地pip安装通常只需要一个命令! 此外,如果使用本地点安装,用户可以从系统上的任何目录运行TensorFlow程序。

反正windows系统上安装本地pip比较麻烦,一般建议都是用Anaconda工具

  • 在Anaconda中,您可以使用conda创建虚拟环境。 但是,在Anaconda内部,我们推荐使用pip install命令安装TensorFlow,而不是使用conda install命令。

  • 注意:conda软件包是社区支持的,没有官方支持。 也就是说,TensorFlow团队既不测试也不维护这个conda软件包。 使用该软件包需要您自担风险。

5.看到这里,先把以下两个软件安装完先:
CUDA Toolkit 9.1:
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exenetwork
安装这个很费时,主要是下载很慢,可能需要几个小时吧,主要看网速。

Download
Distribution
https://www.anaconda.com/download/
记得选win系统,别选错了。

6.基本上安装之后就是傻瓜式操作了:
注意的是:Anaconda安装是由社区支持的,没有官方支持
按照以下步骤在Anaconda环境中安装TensorFlow:

  • 按照Anaconda下载网站上的说明下载并安装Anaconda。
  • 通过调用以下命令创建一个名为tensorflow的conda环境:
conda create -n tensorflow pip python=3.5
  • 通过发出以下命令来激活conda环境:
activate tensorflow

运行之后出现的画面是:
这里写图片描述
等了一会就好了。

选择输入适当的命令以在您的conda环境中安装TensorFlow。 要安装TensorFlow的纯CPU版本,请输入以下命令:

  • CPU版本(就是电脑没有独立显卡只有集显的)只能安装该版本。
pip install --ignore-installed --upgrade tensorflow
  • GPU版本
pip install --ignore-installed --upgrade tensorflow-gpu

到此,假如电脑没有报错的话,像这样就安装成功了:
这里写图片描述

7.测试安装的环境是否能正常运行:

从shell中调用python,如下所示:

python

在python交互式shell中输入以下短程序:

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

如果系统输出以下内容,则可以准备开始编写TensorFlow程序了,开始你的Tensorflow之旅吧。

8.如果不幸运出错的话,可以看下以下提示:
我们依靠Stack Overflow来记录TensorFlow安装问题及其补救措施。 下表包含了针对一些常见安装问题的堆栈溢出答案的链接。 如果遇到下表中未列出的错误消息或其他安装问题,请在Stack Overflow上进行搜索。 如果堆栈溢出不显示错误消息,请在Stack Overflow上提出有关它的新问题并指定tensorflow标记。

Stack Overflow Link	Error Message
41007279	
[...\stream_executor\dso_loader.cc] Couldn't open CUDA library nvcuda.dll
41007279	
[...\stream_executor\cuda\cuda_dnn.cc] Unable to load cuDNN DSO
42006320	
ImportError: Traceback (most recent call last):
File "...\tensorflow\core\framework\graph_pb2.py", line 6, in 
from google.protobuf import descriptor as _descriptor
ImportError: cannot import name 'descriptor'
42011070	
No module named "pywrap_tensorflow"
42217532	
OpKernel ('op: "BestSplits" device_type: "CPU"') for unknown op: BestSplits
43134753	
The TensorFlow library wasn't compiled to use SSE instructions
38896424	
Could not find a version that satisfies the requirement tensorflow

然后点开相对应的链接:
41007279
42011070
42217532
43134753
38896424

好了,有什么不懂的话就继续在Stack Overflow网站上找吧,这个网站比较齐全,而且大神很多,要想把TensorFlow学会肯定不能只依靠中文资料,希望大家努力加油吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晚餐男孩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值