array合并&array分割&numpy的浅拷贝和深拷贝

import numpy as np
arr1 = np.array([1,2,3])
arr2 = np.array([4,5,6])
arr3 = np.vstack((arr1,arr2))#垂直合并
print(arr3)
print(arr3.shape)

在这里插入图片描述

arr4 = np.hstack((arr1,arr2))#水平合并
print(arr4)
print(arr4.shape)

在这里插入图片描述
不管是垂直合并还是水平合并,都可以多个合并
在这里插入图片描述
另一种合并方式
在这里插入图片描述
转换维数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
array分割
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果就是想切分3份呢?不等分割
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
浅拷贝和深拷贝
在这里插入图片描述
请思考,明明只是改变了arr2中第0个值,为什么arr1也跟着改变了?
这是因为arr1,arr2虽然不是同一个指针,但他们的指针指向的是同一个地址,我们不是另外开辟空间存储了arr2的内容,而是简单的将arr2的指针也指向了arr1的存储地址。

这就是浅拷贝,arr1和arr2共享一块内存

如果想使内存独立,虽然一样的数据但互不影响?(相当于另外开辟一块内存空间),这就是深拷贝。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值