随机森林RF介绍与使用(实操)

这篇博客探讨了随机森林(RF)与决策树的比较。通过实例展示了如何使用Python的scikit-learn库构建和训练模型。结果显示,随机森林的准确率通常高于决策树,尤其在大数据集上表现更优。尽管在某些特定情况下可能降低,但随机森林在多数情况下提供了更稳定的预测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随机森林(RF)
在这里插入图片描述
RF算法流程
在这里插入图片描述

from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import numpy as np
import matplotlib.pyplot as plt
# 载入数据
data = np.genfromtxt("LR-testSet2.txt", delimiter=",")
x_data = data[:,:-1]
y_data = data[:,-1]

plt.scatter(x_data[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值