作为刚经历过学区房抢购的过来人,我太懂那种焦虑了——每天刷链家、贝壳刷到半夜,生怕心仪的房源被抢或涨价,却总因为工作忙错过降价笋盘。后来花了3天写了个爬虫,自动爬取目标学区的房源数据,实时对比价格,一旦有房源降价超过5万就自动发邮件提醒,最后靠着它精准蹲到了一套降价12万的两居室,省下来的钱够装修了!
这篇文章就把这套“学区房价格监控系统”完整拆解,从目标网站选择、数据爬取、价格对比到邮件推送,每一步都附可运行代码,新手也能跟着部署,从此告别手动刷房,躺着等降价通知。
一、核心思路:监控系统的4大模块
整个系统的逻辑很简单,就像一个“自动化房产中介”,全程无需手动干预:
定时爬取(APScheduler)→ 数据提取与清洗(Requests+lxml)→ 历史数据对比(SQLite)→ 降价检测+实时推送(邮件/企业微信)
- 爬取目标:链家学区房列表页(反爬适中、数据结构化强,新手友好);
- 核心功能:定时爬取房源价格→存储历史数据→对比找出降价房源→自动推送提醒;
- 部署方式:本地运行(Windows/Mac/Linux均可),或部署到云服务器(24小时监控)。
二、准备工作:10分钟搭好环境(零踩坑)
1. 目标网站选择与分析
- 选择理由:链家学区房页面(如北京海淀中关村学区)数据结构化,价格、户型等字段清晰,反爬措施相对温和,适合新手;
- 目标URL示例:
https://bj.lian
订阅专栏 解锁全文
745

被折叠的 条评论
为什么被折叠?



