基于深度学习的信源信道联合编码--源(图片数据)

Deep Joint Source-Channel Coding for Wireless Image Transmission![Alt]

1、文章概述,研究背景
该文章提出了一种用于无线图像传输的深度联合源信道编码算法,算法利用深度学习方法进行图像压缩和通信系统设计,通过训练网络来学习图像的统计特征,并根据信道条件进行优化。实验结果表明,该算法在低信噪比和有限信道带宽下表现出优越的性能,并且对信道条件的变化具有鲁棒性。该算法还展示了在慢衰落信道下的出色性能,优于传统的分离式数字传输方案。这是首次针对AWGN和衰落信道训练用于无线高分辨率图像传输的端到端联合源信道编码架构。

2、研究思路
这项研究的主要目标是通过深度联合源信号和信道编码(Deep Joint Source-Channel Coding,简称Deep JSCC)来解决无线图像传输中的问题。传统的图像传输系统通常采用分离的源编码和信道编码,但在实际应用中,当信道条件与系统优化时的条件不同时,这种分离的设计可能会导致性能下降。为了解决这个问题,本研究提出了一种深度学习的方法,将源编码和信道编码结合在一起,形成一个端到端的传输系统。具体而言,研究者设计了一个深度神经网络架构,该网络可以同时进行源编码和信道编码的任务。通过联合优化源编码和信道编码的过程,可以在保证传输质量的同时,提高系统的性能和效率。通过实验证明,与传统的分离式源编码和信道编码相比,深度JSCC方法在不同信道条件下都能够获得更好的传输性能。此外,深度JSCC方法还具有较低的延迟,适用于对传输速率要求较高的应用,如自动驾驶汽车或无人机的图像/视频传感器数据传输。总之,本研究通过深度学习的方法,将源编码和信道编码结合在一起,提出了一种新的无线图像传输方案,解决了传统分离式设计在不同信道

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值