文献总结
Deep Joint Source Channel Coding for Wireless Image Transmission with OFDM
摘要
就是说本文做了一个网络,
1.这个网络可以将一张图片通过OFDM的方式进行传递以及接收
2.这一个网络将信源编码和信道编码整合为一个整体,而不是分开进行
3.这个网络是由(一些CNN层)和一些(可以微分的层但不可以被训练的层)构成的
- 备注:
- 1.利用了domain知识在神经网络里面,故而也叫做模型驱动
- 2.joint source channel coding (JSCC) 联合信源信道编码
Ⅰ.介绍
前面两段说了一帕拉,就是说,实现JSCC的可行性。而且以前也没有JSCC应用到多径信道。
然后本文提出了一个基于深度学习的JSCC方案,这个方案可以在多径信道下进行图像传输。
JSCC网络结构
- JSCC网络结构:
- 图像处理单元 (将图像处理成可以被OFDM信号和网络训练的样本)
- 可以训练的CNN层 (encoder + decoder)
- 可以微分但是比可以被训练的层:
-
多径信道层
-
基带处理单元 (IFFT + CP +Clipping) (removing cp + FFT)
-
Ⅱ.相关的工作
A. 深度联合源信道编码
B. 用于通信的模型驱动机器学习
A和B就是讲了一下其他的人在做什么,其他的论文里面也是用了A和B的思想方法
Ⅲ.提供的方法
A. 在多径信道下的Deep JSCC结构
介绍了一下怎么在JSCC里面应用多径信道,以及一些多径信道的知识
B. 扩展到OFDM和剪裁信号的JSCC
OFDM信号有Np个导频符号和Ns个信息符号,在所有的载波频率上采用块状导频进行操作。也就是说,导频符号和信息符号的频率间隙和频率长度是一样的,导频符号和信息符号的时隙是不一样的。
这样,在每一个频率位置都有对应的导频符号值。
Y.shape: Ns×Lf f t (Ns代表了传输的符号的个数,Lfft代表了fft变化的长度)
Yp.shape: Np×Lf f t (Np代表了传输的符号的个数,Lfft代表了fft变化的长度)
过高的峰均值比(PAPR):采用了signal clipping (信号剪裁的方式),类似于剪切的ReLu激活功能。
这里的ρ表示限幅比例,Ps是输入信号功率
C. 运用了专业知识的解码器设计
盲从方法 (IMPLICIT method)
明晰方法 (EXPLICIT methon)