Deep Joint Source Channel Coding for Wireless Image Transmission with OFDM 论文总结

本文提出了一种基于深度学习的Deep JSCC方案,该方案整合了信源编码和信道编码,并在多径信道下进行图像传输。网络由CNN层和不可训练的信道层组成,利用模型驱动的方法。研究中还探讨了在OFDM系统中应用JSCC,包括信号剪裁以降低峰均功率比,并设计了专业知识驱动的解码器。
摘要由CSDN通过智能技术生成

Deep Joint Source Channel Coding for Wireless Image Transmission with OFDM

摘要

就是说本文做了一个网络,
1.这个网络可以将一张图片通过OFDM的方式进行传递以及接收
2.这一个网络将信源编码和信道编码整合为一个整体,而不是分开进行
3.这个网络是由(一些CNN层)和一些(可以微分的层但不可以被训练的层)构成的

  • 备注:
    • 1.利用了domain知识在神经网络里面,故而也叫做模型驱动
    • 2.joint source channel coding (JSCC) 联合信源信道编码

Ⅰ.介绍

前面两段说了一帕拉,就是说,实现JSCC的可行性。而且以前也没有JSCC应用到多径信道。
然后本文提出了一个基于深度学习的JSCC方案,这个方案可以在多径信道下进行图像传输。

JSCC网络结构
  • JSCC网络结构:
    • 图像处理单元 (将图像处理成可以被OFDM信号和网络训练的样本)
    • 可以训练的CNN层 (encoder + decoder)
    • 可以微分但是比可以被训练的层:
      • 多径信道层

      • 基带处理单元 (IFFT + CP +Clipping) (removing cp + FFT)

        本文的OFDM的结构

Ⅱ.相关的工作

A. 深度联合源信道编码
B. 用于通信的模型驱动机器学习

A和B就是讲了一下其他的人在做什么,其他的论文里面也是用了A和B的思想方法


Ⅲ.提供的方法


A. 在多径信道下的Deep JSCC结构

介绍了一下怎么在JSCC里面应用多径信道,以及一些多径信道的知识


B. 扩展到OFDM和剪裁信号的JSCC

OFDM信号有Np个导频符号和Ns个信息符号,在所有的载波频率上采用块状导频进行操作。也就是说,导频符号和信息符号的频率间隙和频率长度是一样的,导频符号和信息符号的时隙是不一样的。
这样,在每一个频率位置都有对应的导频符号值。




Y.shape: Ns×Lf f t (Ns代表了传输的符号的个数,Lfft代表了fft变化的长度)
Yp.shape: Np×Lf f t (Np代表了传输的符号的个数,Lfft代表了fft变化的长度)




过高的峰均值比(PAPR):采用了signal clipping (信号剪裁的方式),类似于剪切的ReLu激活功能。
在这里插入图片描述
这里的ρ表示限幅比例,Ps是输入信号功率

C. 运用了专业知识的解码器设计

盲从方法 (IMPLICIT method)

明晰方法 (EXPLICIT methon)

在这里插入图片描述

Ⅳ.训练和评估

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Martin__Liu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值