电源模块设计过程(降压、正压转负压)-MC34063

MC34063是一款非常好用的电源模块,能够实现降压、正压转负压等多种功能。比较好用,下面就来介绍它的设计过程:

参考:https://www.ti.com.cn/cn/lit/ds/symlink/mc34063a.pdf

1. 芯片引脚

在这里插入图片描述
在这里插入图片描述

  • switch collector: 开关晶体管集电极
  • switch emitter: 开关晶体管发射极
  • Timing capacitor: 决定开关频率的电容
  • GND: 接地
  • comparator inverting input: 比较器反向输入,用来构成反馈
  • Vcc: 供给电压,接输入电压
  • Ipk:
  • Driver collector: 驱动晶体管集电极

2. 典型电路(降压)及其计算

在这里插入图片描述

计算过程:
在这里插入图片描述
这里要设计一个12V转5V的电路。计算过程中的各个变量:

  • Vout: 输出电压,这里为5V
  • Vin(max):输入电压,这里为12V
  • VF: 二极管的压降,由外部的二极管确定。实际选用的肖特基二极管压降为0.4V
  • Vsat: 晶体管的饱和压降,由数据手册确定,这个电路中1和8脚相连,故看上面一排,选用典型值1V计算
    在这里插入图片描述
  • Iout(max):输出最大电流,自己定,我一般选用200mA,实际得看情况
  • Vripple(pp):输出电压峰峰值,也是自己定,我一般设为100mV

这样就能确认电路中元件的参数。实际上,Co、Ct以及Rsc都不用太认真算,和典型电路中的一样就行了;Ct和L得好好确认一下(L也是越大越好,不过选用太大就浪费了)。R1和R2决定了输出电压,也得算一下。

3. 典型电路(正压转负压)

在这里插入图片描述
与上面的电路类似,计算:
在这里插入图片描述
计算也是类似的,注意几点:

  • R1、R2的位置和降压的是相反的
  • 电感与二极管位置是反着的
  • 注意电容的极性,不要接反!
### 中文文本情感分析词典 对于中文文本的情感分析,构建或获取合适的情感词典至关重要。常用的情感词典可以分为两类:通用型和领域特定型。 #### 1. 常见的中文情感词典资源 - **知网Hownet** 提供了一个较为全面的情感词汇库,其中包含了正面情绪、负面情绪以及其他相关联的情绪类别[^1]。 - **BosonNLP** 开源了一套高质量的中文情感词典,覆盖了广泛的情景,并且定期更新维护以适应新的表达方式和发展趋势[^2]。 - **清华大学THUOCL语料库** 收录了大量的分类标签数据集,其中包括情感倾向性的词语列表,适合学术研究和技术开发人员使用[^3]。 #### 2. 下载方法 大多数公开可用的情感词典都可以通过官方网站或者GitHub仓库下载: ```bash git clone https://github.com/bosonnlp/sentiment-dict.git cd sentiment-dict/ ``` 上述命令展示了如何克隆 BosonNLP 的 GitHub 项目来获得其发布的最新版本情感词典文件夹 `sentiment-dict`。 #### 3. 使用说明 一旦获得了所需的情感词典,在实际应用之前还需要做一些准备工作,例如加载字典到内存中以便快速查找匹配项;定义评分机制决定最终得分正负极性等操作。 以下是基于Python的一个简单例子展示怎样利用这些预先准备好的情感词典来进行基本的情感打分计算: ```python from collections import defaultdict def load_sentiment_dict(file_path): """读取情感词典""" with open(file_path, 'r', encoding='utf8') as f: lines = f.readlines() senti_words = {} for line in lines: word, score = line.strip().split()[:2] try: senti_words[word] = float(score) except ValueError: continue return senti_words def analyze(text, senti_dict): """对输入字符串进行简单的加权求和评估""" words = text.split(' ') scores = [] for w in words: if w in senti_dict: scores.append(senti_dict[w]) avg_score = sum(scores)/len(words) if len(words)>0 else 0. polarity = "positive" if avg_score >= 0 else "negative" return {"average": round(avg_score, 4), "polarity": polarity} # 加载情感词典并测试一段文字 senti_dict = load_sentiment_dict('./path/to/your/dictionary.txt') result = analyze("这个产品真的很好用", senti_dict) print(f"Polarity: {result['polarity']}, Average Score: {result['average']}") ``` 这段代码实现了两个主要功能函数——一个是用来解析本地存储的情感词典文档(`load_sentiment_dict`),另一个则是执行具体的情感分析逻辑(`analyze`)。最后给出了一个具体的调用实例,假设已经有一个路径指向有效的中文情感词典文件。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值