2013.ICDM.Explaining outliers by subspace separability

2013.ICDM.Explaining outliers by subspace separability

main idea

explain a given anomaly by identifying the subspace of features that best separates that outlier from the rest of the dataset.
The outlier detection problem is converted into a two-class classification problem. Then, to find the most suitable subspace, the authors employ a feature selection method.

method

find a explanatory subspace for an outlier p
在这里插入图片描述

converted into a two-class classification problem

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

feature selection

在这里插入图片描述

数据挖掘是从大量的数据中发现隐藏在其中的有用信息和模式的一种技术。在数据挖掘领域,有很多不同的算法可以用来实现不同的任务。ICDM(International Conference on Data Mining)是一个国际数据挖掘会议,ICDM十大算法是在该会议上被广泛讨论和认可的一组数据挖掘算法。下面是ICDM十大算法的简要介绍: 1. K-均值聚类算法:将数据集拆分成K个不同的簇,使得每个簇内的数据点之间的距离最小化。 2. DBSCAN(Density-Based Spatial Clustering of Applications with Noise)密度聚类算法:通过密度来发现聚类,可以识别任意形状的簇。 3. Apriori算法:在大规模数据集中寻找频繁项集,用于关联规则挖掘。 4. FP-Growth算法:一种更高效的关联规则挖掘算法,通过构建FP树来发现频繁项集。 5. PageRank算法:用于在网页链接网络中评估网页的重要性。 6. SVD(Singular Value Decomposition,奇异值分解)算法:一种矩阵分解技术,常用于推荐系统。 7. AdaBoost(Adaptive Boosting)算法:一种集成学习算法,通过组合多个弱分类器来构建一个更强大的分类器。 8. EM算法(Expectation-Maximization):一种迭代优化算法,常用于概率模型参数估计。 9. 剪枝算法:在决策树学习中,通过剪枝来提高泛化性能。 10. 神经网络算法:一种模拟人脑神经系统的计算模型,可用于分类、回归等任务。 这些算法在不同的数据挖掘任务中具有广泛的应用,例如聚类、关联规则挖掘、推荐系统和分类等。研究和应用这些算法有助于从海量数据中获得有价值的信息和知识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值