AI 驱动的低代码平台-AI+低代码的思考与 CodeWave 的实践介绍

GPT 出现后,对于低代码产品的影响、冲击一直是一个悬而未决的问题。事实上 GPT 不仅不会干掉低代码产品,还可以帮助低代码产品做得更好。本文会详细讲解CodeWave平台结合AI能力的思考与实践。 

GPT 出现后,对于低代码产品的影响、冲击一直是一个悬而未决的问题。事实上 GPT 不仅不会干掉低代码产品,还可以帮助低代码产品做得更好。

最近开始梳理网易 CodeWave 智能开发平台平台的 AI 方向,本文会从产品技术角度详细聊聊 AI+低代码结合的机会,以及 CodeWave 低代码平台如何通过 AI 能力,大幅降低低代码产品的开发门槛,提升产品竞争力的一些实践。

低代码的困境

低代码市场目前已经达到了50亿规模左右,并且以年30%的复合增长率高速增长,低代码产品也成了用户降本增效的重要选择之一。那对于市场上的诸多低代码产品,用户最看重什么呢?用户实际使用低代码产品的体验如何?

在我们的市场调研过程中发现,70%的用户会把“用户体验”作为重要的关注方向,用户会深入关注低代码产品的交互、操作等,并且直接会作为自己决策的依据之一。

同时,45.3%的企业用户觉得,目前采购的低代码平台并不好用,其中70%为中小型企业。

为什么会这样?说好的降本增效呢?我们来分析一下。

下面看这张图:

0

献丑了,这是 CodeWave 平台对接登陆的一个逻辑编排过程。我们可以看到需要做这样的一个登陆逻辑,需要对登陆的全流程、Http 基础知识、日志等功能模块、加密解密都非常熟悉,同时要熟悉低代码平台调用接口、赋值、设置 Header、打日志、解析数据等操作。一般来讲一个熟练的低代码教练可能要花费一天左右时间来完成这段逻辑的搭建,而对于一个完全不懂开发的人员来讲,他完全无法实现这块逻辑。

事实上,对于一个熟练的后端开发者来讲,用代码实现这段逻辑可能也就花费一个小时左右。这里暴露了低代码重要的一个问题:定制开发的使用门槛太高,效率太低。低代码产品进入到企业当中,首先要通过平台完成很多定制开发工作,以便跟企业自身it设施集成,这个过程一般通过低代码平台的逻辑编排或者流程编排能力,要求用户在熟悉编码能力的基础上使用平台进行搭建,其使用门槛相当高。

CodeWave 平台也经常会走进客户去了解客户实际的反馈。在一次调研中我们发现,逻辑编排这块反馈的问题非常多:

0

逻辑模块的问题中,最高频的问题问题逻辑阅读(69%),其次是逻辑编写(56%)

逻辑阅读​

•在逻辑反馈问题中,超过9成用户反馈“复杂逻辑场景下,阅读之前的逻辑、他人的逻辑”遇到困难,

•在逻辑反馈问题中,约3成用户反馈“一个逻辑页面中承载的有效信息与我的预期有差距”(信息密度问题)

逻辑编写​

•最高频的三项问题依次是:复杂逻辑的编写和实现(78%)、逻辑调试(debug)(67%)、复杂应用大量逻辑的管理(56%)

•用户反馈的其他问题:对于系统提供的 create,update 等集成逻辑没有日志或者调试机制,一旦发生未知异常,就很难定位问题。

所以,低代码在很多场景并不低。

另外则是一个老生常谈的话题:质量问题。 低代码产品能做核心系统吗?大部分低代码产品并没有考虑性能、高可用、安全、可观测性等核心 Web 应用不可或缺的部分,同时搭建者的良莠不齐,也无法保证逻辑、sql 、数据建模的低代码部分设计合理,没有性能问题。拥有因此很多客户选择低代码产品,只会构建他们认为不太重要的一些内部管理系统、项目管理系统等。很多低代码仍然无法解决核心应用的搭建问题。

那么作为发展历史有几十年之久的低代码厂商,会坐以待毙吗?答案是不会的。目前的厂商逐步开始往以下这两块方向努力:​

•提升效率,通过一定的机制让用户使用的门槛更低,使用更高效

•提升质量,使用户搭建的产品能够达到基本的开发工程师的质量要求,保证线上不出问题

而随着人工智能技术的发展,很多低代码厂商逐步尝试将人工智能技术引入,用于解决以上的两个问题。

低代码&AI业内发展

Mendix & Outsystem 作为世界老牌低代码厂商,2018年就开始在自己的低代码平台中引入 AI 技术。Mendix 10 发布时,首次提出了 AI-ENHANCED APP DEVELOPMENT 概念。他们的主要思路为人工智能辅助开发(AIAD),他们会将下一代产品引入生成式人工智能(AIGC)。同时,生成式AI加入低代码和无代码开发平台,将会进一步降低使用低代码和无代码开发工具的门槛,并或将诞生新的智能开发技术。

0

Mendix 的思路以 AI 辅助编程为主(AI Low-Code App Development Platform | Mendix)。举例来讲,由于他们拥有一个强大的 IDE ,他们的 AI assist 能力首先考虑用户的编辑器体验。对于低代码编辑器使用者来讲,最头疼的就是如何在一大堆组件和逻辑中快速选择想要的了,所以 Mendix 从 IDE 的基本体验出发,参考代码补全和代码推荐的方式创造性地提出了节点推荐的方式:(如图所示)

0

这种做法有效解决了“选择困难症”。AI 会根据用户上下文计算推荐需要的内容,并计算权重用来排序,很类似搜索引擎的工作。同时类似的工作还有著名数据可视化平台 Tableau 的 Show Me 功能:

0

show me 则通过一系列的规则和数据类型的嗅探,智能的给用户提示需要的图表,有效的治疗了用户在数据可视化场景的“选择困难症”。

对于后起之秀来讲,OutSystems 则从质量出发,推出了 OutSystems AI Mentor System

0

这个产品另辟蹊径,通过提示和改善用户搭建应用的质量,来提升低代码产品的可用性。

MOOC(大规模开放式在线课程)是一种通过网络平台开设的在线教育课程,可以为广大学习者提供方便灵活的学习机会。人工智能实践:TensorFlow笔记,是由北京大学推出的一门针对人工智能领域的实践课程,旨在帮助学习者掌握使用TensorFlow框架进行深度学习的基本方法和技巧。 该课程的代码提供了一系列丰富的示例和实践项目,通过这些代码我们可以了解和掌握TensorFlow的使用方法。其中包括数据处理、模型构建、模型训练与评估等关键步骤。通过学习和实践,我们可以学会如何搭建神经网络模型,进行图像分类、文本生成等任务。 在这门课程中,北京大学的代码示例主要围绕深度学习的常用库TensorFlow展开,通过给出具体的代码实现,解释了每部分的原理和操作方法,帮助学习者理解基本概念和技术,熟悉TensorFlow框架和编程语言的使用。 此外,这门课程还涵盖了一些实践项目,例如基于TensorFlow的手写数字识别、图像分类与预测、文本生成等。通过完成这些实践项目,我们可以加深对TensorFlow的理解并提高实践能力。 总之,人工智能实践: TensorFlow笔记 - 北京大学代码是一门结合了理论与实践的在线课程,通过教授深度学习的基本概念和TensorFlow的应用方法,帮助学习者掌握人工智能领域的基本技能。通过这门课程,我们可以学习到TensorFlow的使用方法,掌握一定的实践能力,并将这些知识应用于实际项目当中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值