python机器学习
打工人C&K
学编程的小懒
展开
-
R-CNN算法优化策略
**R-CNN算法优化策略**1,两阶段检测的进阶模型首先进行数据处理,然后输入backbone得到特征图,然后进入RPN中提取候选区域roi,然后再ROI Align提取特争,然后送入BBox Head进行进一步的回归和分类。主要介绍方面第一步主要解决多尺度问题,预测物体大小第二部算是fastRNN的局部表示图主要用最后一层对下一步进行输入。第三步卷积神经网络存在下采样,在不同深度存在不同特征,第四步fpn将不同层的特征相互融合,将特征展现得更加全面。骨干网络和fpn相对独立,原创 2022-02-02 23:14:19 · 2918 阅读 · 0 评论 -
Faster R-CNN原理详解
**Faster R-CNN原理详解**首先将RPN输出以及将anchor解码,然后对预测框进行clip,然后对预测狂进行过滤,filter将面积太小的过滤掉,然后将分数较低的去掉,NMS去掉一部分十分接近的去掉,再去掉一边分数比较的低的,,如图ROI Pooling将ROI特征图其分为若干的选框对应举例改进算法:ROI AlignBBOX head...原创 2022-01-29 18:48:27 · 895 阅读 · 0 评论 -
Faster R-CNN网络架构
**Faster R-CNN网络架构原理解析**Anchor的第一个分支是一个分类分支负责判断途中有没有东西,但是不会判断物品第二个分支是回归分支表示Anchor和真实值有多远最终提取的候选框尽量向真实值靠拢。RPN层是如何提取候选区域RPN的网络结构首先经过一个33的卷积分成两个二分支然后分别使用11的卷积得到分类分支和回归分支,每个像素点取9个anchor,在分类分支当中我们需要两维来判断anchor是不是包含物体,回归分支当中需要四维来判断anchor和真是框的相对位置。然后将原创 2022-01-29 18:21:41 · 2887 阅读 · 0 评论 -
paddle的两阶段基础算法基础
**paddle的两阶段基础算法详解与实践**有三部分分别是:1,两阶段算法发展历程2,Faster R-CNN原理解析3,Paddle Detection实战演练一:两阶段算法的发展历程目标检测一开始会通过传统的图像特征来分类图片等,2012之后加入了深度学习大发展,2014年将深度学习运用于机器学习,机器视觉之中。R-CNN详解:运作步骤:用传统的特征HOG/Haar进行特征提取,再用机器学习进行分类。而R-CNN是最早将深度学习和目标检测结合在一起的。R-CNN的网络结构原创 2022-01-29 15:50:02 · 1343 阅读 · 0 评论 -
第12天:目标检测基础知识
**第12天:目标检测基础知识**目标检测具有哪些功能实现哪些功能:1,分类2,分类+定位3,多物体分类+定位4,实例分割(目标检测的一个子方向)运用广泛不具体举例现存的部分问题:环境影响(光照,模糊度),密集,遮挡,重叠,多尺度(小目标,大目标),小样本,旋转框。传统的目标检测算法:1,区域选择(选取一块小的区域,通过滑动改变所选区域大小确定物体位置)2,提取特征(SIFT,HOG)3,分类(SVM,Adaboost)4,后处理(NMS:过滤框)Anchor和Anchor原创 2022-01-22 21:59:57 · 2914 阅读 · 0 评论 -
第十一天:PaddleSlim模型压缩实践
**第十一天:PaddleSlim模型压缩实践**小模型的好处•运行时显存/内存占用变小•计算量减少、延时变小、QPS增大•可以移动端及嵌入式端部署怎么产出好用的小模型•将模型的参数量变少•将小模型的精度提高•将模型的计算量减少•设计更高效的网络结构搜索策略对搜索的模型进行约束作业 :通道卷积裁剪目标:先计算敏感度,依据敏感度剪裁模型•敏感度的意义:得到敏感度信息后,可以通过敏感度确定每层卷积的剪裁率。•怎么确定敏感度每个卷积层的敏感度信息统计方法为:原创 2022-01-18 19:56:04 · 2836 阅读 · 0 评论 -
第十天:paddlehub体验
paddlehub口罩检测模型实例:#!unzip /home/aistudio/data/data25505/detection.zipArchive: /home/aistudio/data/data25505/detection.zipreplace detection/test_mask_detection.jpg? [y]es, [n]o, [A]ll, [N]one, [r]ename: ^Cimport matplotlib.pyplot as plt import matplot原创 2022-01-18 18:41:38 · 2948 阅读 · 0 评论 -
第九天:经典的卷积神经网络
**第九天:经典的卷积神经网络**卷积神经网路的一般结构:1.卷积层+激活曾和池化层的组合多次出现 提取特征2.多个全连接或者特殊的CNN结构作为输出层 作分类器或检测器或分割器计算机视觉主要任务:图像分割,目标检测,图像语义分割,图像实例分割CIFAR-10数据集imagenet数据集经典CNN...原创 2022-01-14 19:26:08 · 842 阅读 · 0 评论 -
第八天:卷积神经网络
**第八天:卷积神经网络**卷积神经网络相较于全连接网络而言更加的具有广泛性,并且全连接网络模型结构不够灵活,对于图片而言,输入层神经元的个数等于像素个数,参数太多太庞大。下面将对于图片进行比较:相较而言,卷积神经网络中神经元之间的链接不是全连接了而是部分链接,这是卷积神经网络一个比较重要的特点卷积神经网络建立模型:上图的主要目的是减少网络参数加快下载速度权重共享,将一张大的图片分成多个连续的小图片,分别计算无论哪一块算出来都是w1到wn的和,都一样,所以叫权值共享。下采样:对原创 2022-01-12 18:48:15 · 490 阅读 · 0 评论 -
第七天:深度学习与图像处理
**第七天:深度学习与图像处理**先建立模型:上图同样也是神经网络所遵循的结构。前馈神经网络:从左到右计算,此过程不可逆粉色为输入层,深绿色为输出层,每个圆圈为一个神经元,中间的两个层为隐藏层,隐藏层数越多意味着网络越深,输出层:经过上述的计算将其变成一个概率分布根据概率的大小确定最终 的结果。损失函数:希望能达到的目标值参数学习:将损失降到最小。反向传播算法:手势识别作业:根本:图像分类准备数据:准备0~10的手势导包:import osimport原创 2022-01-11 20:04:21 · 838 阅读 · 0 评论 -
第六天:机器视觉-深度学习
第六天:机器视觉-深度学习深度学习就是通过低层次特征形成更加抽象的高层特征或属性类别,一般是将低层次表达通过线性或者非线性组合获得更高层次的表达,图像与声音类似。机器学习就是通过算法,使得机器能从大量历史数据中学习规律,从而对新的样本做智能识别或对未来做预测。深度学习是一种机器学习方法 , 它允许我们训练人工智能来预测输出,给定一组输入(指传入或传出计算机的信息)。监督学习和非监督学习都可以用来训练人工智能。神经网络是一组粗略模仿人类大脑,用于模式识别的算法。神经网络这个术语来源于这些系统架构设计背原创 2022-01-11 18:46:00 · 2502 阅读 · 0 评论 -
第四天:paddlehub的应用
**第四天:paddlehub的应用**深度学习的难点,通过大数据和小样本的局限,建立模型,通过大模型和模型设计的门槛设计损失函数,通过大算力和计算资源限制来进行参数学习总结:先导入paddlehub包第二布输入对应模型代码,第三步找到相应的路径图片。训练集:训练模型,量最多测试集:模型未见过的数据进行测试验证集:类似测试机,训练过程中输出的准确率。总占比为8:1:1模型规范化,生成一个数据读取器,data_reader上述图片的代码实现作业:1导包#CPU环境启动请务必执原创 2022-01-09 19:41:34 · 1488 阅读 · 0 评论 -
第三天课后作业
**第三天课后作业**```pythonimport matplotlib.pyplot as pltimport numpy as npimport jsonimport matplotlib.font_manager as font_managerwith open('data/data31557/20200422.json', 'r', encoding='UTF-8') as file: json_array = json.loads(file.read())原创 2022-01-08 20:30:43 · 658 阅读 · 0 评论 -
第三天:py在深度学习中的常用库
**第三天:py在深度学习中的常用库**应用极其广泛的库有:Numpy,pandas,Matplotlib,PIL等库其中 :numpy是Python科学计算库的基础。包含了强大的N维数组对象和向量运算。pandas是建立在numpy基础上的高效数据分析处理库,是Python的重要数据分析库。Matplotlib是一个主要用于绘制二维图形的Python库。用途:绘图、可视化PIL库是一个具有强大图像处理能力的第三方库。用途:图像处理Series中最重要的一个功能是:它会在算术运算中自动对原创 2022-01-07 21:49:09 · 747 阅读 · 0 评论 -
第二天:py进阶实践
**py进阶实践**在机器学习或者深度学习中py已经是主导性的编程语言,较常见于数据预处理,定义网络模型,执行训练过程,掌握Numpy,pandas很重要,py的进阶语法:数字模块基础:字符串的拼接,列表切片,增删改查较为常用py面向对象:class animaml: def __init__(self,name): self.name = name print("动物名称实例化") def eat(self): print原创 2022-01-07 19:54:59 · 163 阅读 · 0 评论 -
第一天:人工智能,入门
**第一天:人工智能,入门**人工智能使一部机器的反应方式向人一样进行感知,认知,决策,执行的人工程序或系统机器可以将人们视觉观察到的图片转化为很多个点数据进行存储和划分。传统方法:将图片分为颜色,形状,纹理三个维度进行判断,缺点:全局特征丢掉了图像的细节,导致匹配不准确,深度学习的一般过程:训练数据,函数,应用至未知测试数据。分为三大模块:模型(全连接神经网络,卷积神经网络,循环神经网络),策略(模型选择,损失函数选择),算法(学习参数,优化算法,反向传播算法)...原创 2022-01-07 17:47:01 · 790 阅读 · 0 评论