强大的矩阵奇异值分解(SVD)及其应用

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
假设有一个 $m\times n$ 的矩阵 $A$,我们希望将其分解成三个矩阵的乘积:$A=U\Sigma V^T$,其中 $U$ 是一个 $m\times m$ 的酉矩阵,$\Sigma$ 是一个 $m\times n$ 的对角矩阵,$V$ 是一个 $n\times n$ 的酉矩阵。这个分解过程就是奇异值分解(SVD)。 具体步骤如下: 1. 首先,我们计算 $A^TA$,得到一个对称的 $n\times n$ 矩阵。然后,我们可以通过求解这个矩阵的特征值和特征向量,得到一个酉矩阵 $V$(列为特征向量)和一个对角矩阵 $\Sigma^2$(对角线上为特征值的平方)。 2. 接下来,我们计算 $AA^T$,得到一个对称的 $m\times m$ 矩阵。然后,我们可以通过求解这个矩阵的特征值和特征向量,得到一个酉矩阵 $U$(列为特征向量)和一个对角矩阵 $\Sigma^2$(对角线上为特征值的平方)。 3. 最后,我们可以将 $\Sigma$ 中的非零元素取平方根,得到一个 $m\times n$ 的对角矩阵 $\Sigma$。这个矩阵就是 $A$ 的奇异值矩阵。 将 $U$、$\Sigma$ 和 $V$ 相乘,就可以得到原始矩阵 $A$。 这个分解的含义是,我们将原始矩阵 $A$ 分解成三个矩阵的乘积,其中 $U$ 和 $V$ 是酉矩阵,表示变换;$\Sigma$ 是对角矩阵,表示缩放。通过这个分解,我们可以更好地理解矩阵的结构和性质,例如矩阵的秩、奇异值等。在机器学习和数据分析中,SVD 也被广泛应用于降维、矩阵近似、信号处理等领域。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值