Ollama+Chatbox,搭建本地AI聊天系统

     Ollama是一个开源的大型语言模型服务,提供了类似OpenAI的API接口和聊天界面,可以非常方便地部署最新版本的GPT模型并通过接口使用。支持热加载模型文件,无需重新启动即可切换不同的模型。

Ollama的优势

     提供类似OpenAI的简单内容生成接口,极易上手使用类似ChatGPT的的聊天界面,无需开发直接与模型聊天支持热切换模型,灵活多变

搭建步骤

     1.打开https://ollama.com/官网,点击“Download”按钮打开下载页面,选择适合自己系统的版本下载。


     2.找到下载的Ollama安装包,一键安装。


     如果你想把Ollama下载的模型放到其它磁盘(默认是在C盘),打开系统环境变量设置,

     添加变量名:OLLAMA_MODELS,变量值:“你存放Ollama模型的路径”。


     设置保持后需要重启电脑,下载的模型就会存放到你设置的目录里了。


     Linux可以使用提供的安装脚本一键安装Ollama,

curl -fsSL https://ollama.com/install.sh | sh

     3.下载模型
     打开cmd窗口,输入指令

ollama run llama2-cinese:latest


     下载一个支持中文的模型,模型下载完成后,就可以在CMD窗口进行聊天了。

     4.若是觉得命令行的形式不够易用,Ollama 有一系列的周边工具可供使用,包含了网页、桌面、终端等交互界面及诸多插件和拓展。
     之所以 Ollama 能快速形成如此丰富的生态,是因为它自立项之初就有清晰的定位:让更多人以最简单快速的方式在本地把大模型跑起来。同时将繁多的参数与对应的模型打包放入;Ollama 因此约等于一个简洁的命令行工具和一个稳定的服务端 API。这为下游应用和拓展提供了极大便利。
我选择一个最简单的方式:Chatbox

     Chatbox是开源的 ChatGPT API (OpenAI API) 桌面客户端,Prompt 的调试与管理工具,支持 Windows、Mac 和 Linux。

     github地址:https://github.com/Bin-Huang/chatbox

     官网地址:Chatbox官网 - 办公学习的AI好助手,官方免费下载

     下载Chatbox,一路下一步安装完成。

     先启动Ollama服务器模式,

ollama sreve

     如果启动失败,关闭ollama,退出ollama进程,重新启动即可。


     然后打开Chatbox,点击左侧的设置,在模型选项卡,选择AI模型提供方:Ollama,API域名:http://localhost:11434,模型:选择你喜欢的模型,其它默认,确定保存即可开始使用

     4.如果Ollama提供的模型没有你需要的,你可以从huggingface.co或modelscope.cn下载GGUF格式的模型,导入到Ollama。
 

     导入方法:在你下载好的GGUF模型目录,新建一个Modelfile文件,写入:FROM ./vicuna-33b.Q4_0.gguf(FROM后面为GGUF模型的路径)

     在当前目录进入cmd窗口,输入:ollama create example -f Modelfile(example为你重新命名的模型名称)


     导入完成后,就可以使用了,
     ollama run 你刚才导入的模型名称

内容概要:本文档详细介绍了 DEEP SEEK 的本地部署及其与私有知识库整合的具体步骤。主要包括两大部分:Ollama 平台的使用方法和 DeepSeek R1 模型的安装指导。Ollama 是一种能够便捷部署深度学习模型(尤其是大型语言模型)的工具,它支持多种操作系统并在命令行中执行相应操作以完成从下载、配置直至实际使用的全过程。文中针对不同硬件条件给出了具体配置推荐,并逐步讲解了从安装 Ollama 到运行特定大小版本 DeepSeek 模型(如 1.5b 至 70b),再到设置 API 键连接云端服务以及最后利用 Cherry Studio 构建个人专属的知识库的一系列操作指南。同时附上了多个辅助资源如视频教程、在线演示平台链接以便更好地理解和学习整个过程。 适合人群:适合有一定技术背景且想探索本地部署人工智能模型的初学者或是希望通过本地化部署提高效率的研发团队。 使用场景及目标:一是帮助用户了解并掌握在本地环境中配置高性能 AI 工具的全流程操作;二是使用户能够根据自己拥有的计算资源情况合理挑选合适的模型大小;三是通过集成私有知识库为企业内部提供定制化的问答或咨询系统,保护敏感数据不受公开访问威胁。 其他说明:考虑到安全性和稳定性因素,作者还提供了应对潜在风险如遭遇网络攻击时选用可靠替代源——硅基流动性 API 来保障服务持续稳定运作,并强调在整个实施过程中应谨慎处理个人信息及企业关键资产以防泄露事件发生。此外,提到对于更高级的功能例如基于 Ollama 实现本地知识库还有待进一步探讨和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ac-er8888

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值