机器学习1-朴素贝叶斯

1. 算法

计算先验概率P(Y=ck)

计算条件概率P(Xi=xi|Y=ck)

对于给定的实例计算后验概率P(Y=ck)P(xi=xi|Y=ck),取后验概率最大的作为实例的分类

2. 例子

数据集

 123456789101112131415
X1111112222233333
X2SMMSSSMMLLLMMLL
Y-1-111-1-1-11111111-1

3. 原理

假设已知特征向量X=x,要求这个特征对应的类别,也就是要求 ,所以朴素贝叶斯的出发点在于使得后验概率 最大化。根据贝叶斯公式有


分析一下这个式子, P(Y=ck)比较容易计算,另外两项不容易计算,需要转换,因此,根据全概率公式有


假设特征的各个分量之间是独立的,基于此独立性假设有


把式3-2和式3-3代入到式3-1中有


由于式(3-4)中,对于所有ck,分母都是相同的,因此,有

有了这个公式,自然朴素贝叶斯算法的步骤也就出来了


4. 拉普拉斯平滑

4.1 为什么要做平滑处理

零概率问题,就是在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。在文本分类的问题中,当一个词语没有在训练样本中出现,该词语概率为0,使用连乘计算文本出现概率时也为0。这是不合理的,不能因为一个事件没有观察到就武断的认为该事件的概率是0

4.2 理论支撑

为了解决零概率的问题,法国数学家拉普拉斯最早提出用加1的方法估计没有出现过的现象的概率,所以加法平滑也叫做拉普拉斯平滑。假定训练样本很大时,每个分量x的计数加1造成的估计概率变化可以忽略不计,但可以方便有效的避免零概率问题。

4.3 怎么做

假设在文本分类中,有3个类,C1C2C3,在指定的训练样本中,某个词语K1,在各个类中观测计数分别为099010K1的概率为00.990.01,对这三个量使用拉普拉斯平滑的计算方法如下:
1/1003 = 0.001991/1003=0.98811/1003=0.011

  在实际的使用中也经常使用加 lambda1≥lambda≥0)来代替简单加1。如果对N个计数都加上lambda,这时分母也要记得加上N*lambda

5. 优劣势

优点:

小规模数据,多分类任务,适合增量式训练

缺点:

对输入数据的表达形式敏感

6. 应用

7. 实现

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值