朴素贝叶斯基础【机器学习算法一朴素贝叶斯1】

本文回顾了朴素贝叶斯的基础知识,包括条件概率和贝叶斯定理。通过一个实例,展示了如何利用天气特征(如是否下雨、刮北风、闷热和天气预报)进行分类。在实例中,朴素贝叶斯分类器根据天气特征预测降雨的可能性,揭示了其在处理分类问题时的推理机制。
摘要由CSDN通过智能技术生成

基础知识回顾

在这里插入图片描述
(上述内容引自李航《统计学习方法》)

过去的7天当中,有3天下雨,4天没有下雨。用0代表灭有下雨,而1代表下雨,我们可以用一个数组来表示:
y=[0,1,1,0,1,0,0]
而在这7天当中,还有另外一些信息,包括刮北风,闷热,多云,以及天气预报给出的信息,如下表:
在这里插入图片描述
用0代表否,1代表是,可得到如下数组。
[[0, 1, 0, 1],
[1, 1, 1, 0],
[0, 1, 1, 0],
[0, 0, 0, 1],
[0, 1, 1, 0],
[0, 1, 0, 1],
[1, 0, 0, 1]]

知识插曲(懂的可略过此部分)


对于一维数组或者列表,unique函数去除其中重复的元素,并按元素由大到小返回一个新的无重复元素的元组或者列表。参看如下代码,可知 sum(axis=0)sum(axis=1) 用法不同,sum(axis=0)用于计算数组中各元素对应项之和,计算完之后去掉最外层[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值