复信号在信号处理中的意义

本文探讨了在雷达信号处理中复信号与实信号的区别及其使用原因。复信号虽在自然界中不存在,但因其简化处理和保留相位信息的优势在工程中被广泛应用。在雷达接收机中,复信号解决了中频信号采样可能出现的盲相问题,并在相干积累和测速等处理中起到关键作用。
摘要由CSDN通过智能技术生成

引言:

前段时间在学习雷达信号处理的过程中,遇到一个问题,下图所示是两本书中对LFM信号做拉伸处理和低通滤波后的信号表达式的表述在这里插入图片描述
在这里插入图片描述
显然,这两个表达式并不相等,根据欧拉公式
e j θ = c o s θ + j s i n θ e^{j\theta }=cos\theta+jsin\theta ejθ=cosθ+jsinθ
第二张图中的等式与第一张图的等式相比,少了虚部分量,这个问题让我十分不解。


个人理解:

这两个表达式的确并不相等,但是都是正确的。
我们都知道,在实际工程应用和自然环境中,所有信号都是实信号。一般我们都用正弦信号 s ( t ) = c o s ( ω 0 t + φ t ) s(t)=cos(\omega _{0}t+\varphi t) s(t)=cos(ω0t+φt)表示最简单的实信号。复信号 s ( t ) = A ( t ) e j φ t s(t)=A(t)e^{j\varphi t} s(t)=A(t)ejφt在自然环境中并不存在。那么为什么我们还用复信号来描述?

回顾一下信号处理中的知识点,实信号的频谱具有共轭对称性,即实信号幅度谱在复频域上是偶对称的,相位谱是奇对称的。那么假如我可以通过正频率点的信息就可以还原出负频率点的信息,那么负频率点的信息是不是算是冗余的?出于简化处理的目的,希望尽可能不考虑负频率点信息。

学习过欧拉公式和傅里叶变换的朋友都知道 c o s ( ω 0 t ) = π [ δ ( ω + ω 0 ) + δ ( ω − ω 0 ) ] cos(\omega _{0}t)=\pi [\delta(\omega +\omega _{0})+\delta (\omega -\omega _{0}) ] cos(ω0t)=π[δ(ω+ω0)+δ(ωω0)] s i n ( ω 0 t ) = j π [ δ ( ω + ω 0 ) − δ ( ω − ω 0 ) ] sin(\omega _{0}t)=j\pi [\delta(\omega+\omega _{0})-\delta (\omega-\omega _{0}) ] sin(ω0t)=jπ[δ(ω+ω0)δ(ωω0)] e j θ = c o s θ + j s i n θ e^{j\theta }=cos\theta+jsin\theta ejθ=cosθ+jsinθ
那么可以很容易的推导出
e j θ = 2 π δ ( ω − ω 0 ) e^{j\theta }=2\pi\delta (\omega -\omega _{0}) ejθ=2πδ(ωω0)你会惊喜的发现复信号只有正频率点的信息(其实就是复信号的单边谱性质)

除了由于我们只关心正频率点的信息这一原因外,使用复信号在信号处理中也比实信号方便许多,不需要使用积化和差等复杂公式,频谱搬移也很方便。

在雷达信号处理用,复信号还能解决“盲相”的问题。

我们知道,在雷达接收机,特别是全相参雷达中,有一组成部分用于将中频信号化为零中频信号(视频信号),称为数字相位检波器,可输出相互正交的I、Q双通道信号---- x ( t ) = I ( t ) + j Q ( t ) , x ( t ) x(t)=I(t)+jQ(t),x(t) x(t)=I(t)+jQ(t)x(t)为复信号。

若是直接对中频信号做采样处理,会出现采样结果为0的风险,使得结果出现误差,如下图。
在这里插入图片描述
但是若是对复信号做采样处理,由于双通道信号正交,相位相差 π 2 \frac{\pi }{2} 2π,故不会出现盲相问题。
在这里插入图片描述
在这里插入图片描述
同时,使用复信号还可以将信号的相位信息保留下来,这对于之后的相干积累,测速等处理都至关重要。

结语:

以上是查阅了资料以及学习了其他大佬的观点以后做的总结,若有不足与错误,欢迎斧正!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

没时间解释了快上车

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值