P2- 复信号 - 通讯原理

前言:

        这里主要结合一下欧拉定理,介绍一下复信号


一  复数概念定义

 复数有两种定义方式:

指数函数:(通过欧拉公式展开可以得到对应的复数形式)

 复数:实部a, 虚部b

 幅值:A

 相位: \varphi

      


二  复信号

     2.1 定义

      复信号是一对实信号 

 2.2  例子

        假设一对实数 cos2\pi t sin 2\pi t

        z(t)=cos 2\pi t + j sin2 \pi t

         用极坐标方式可以表示为

         z(t)=e^{j2\pi t}, 反应单位点在一个圆上面旋转


三  复单频信号

    在圆上的匀速运动可以表示为

    手机通讯中,收发双方以固定的频率通讯,可以认为单频信号,但是当双方

一方运动的时候,就会产生多普勒效应,频率是动态变化的,这个时候就要解决这种

效应.

     复单频信号定义:

    z(t)=e^{jwt}

             =coswt+j sinwt

    角频率 w: 单位rad/s  

                        点在圆上面的线速度

     转速是频率f  : 单位Hz  circle/s

                                w=2\pi f

     正传 是正频率  反转是负频率


四  信号分解

     一个余弦信号可以分解成两个复信号

      s(t)=A cos(2\pi ft +\theta)

              =A Re\begin{Bmatrix} e^{j(\theta+2\pi vt)} \end{Bmatrix}

              =\frac{A}{2} Re\begin{Bmatrix} e^{j(\theta+2\pi vt)}+e^{-j(\theta+2\pi vt)} \end{Bmatrix}

可以看成一对共轭复信号做圆周运动的叠加


五  复信号的功率和能量

      复信号

             z(t)=a(t)+j b(t)

    5.1   瞬时功率

            p(t)=a^2(t)+b^2(t)=|z(t)|^2

   5.2  平均功率

            瞬时功率的平均值 

 5.3 能量

           瞬时功率的积分

         

 

 5.4 例子

 功率信号

 功率信号

 能量信号

其中


六 复信号能量及功率性质

     非负性

      系数的模平方

      时延不改变能量或功率

       不满足叠加性

    例:

     z_1(t)=A_1e^{j2\pi t+\theta_1},A_1>0,P_1=A_1^2

    z_2(t)=A_2e^{j2\pi t+\theta_1},A_2>0,P_2=A_2^2

     z_1(t)+z_2(t)=e^{j 2\pi t+\theta}(A_1+A_2e^{j (\theta_2-\theta_1)})

    则和的瞬时功率为

   p=|A_1+A_2e^{j(\theta_2-\theta_1)}|^2

   当\theta_2=\theta_1

  p=|A_1+A_2|^2>p_1+p_2

  当\theta_2-\theta_1=\frac{\pi}{2}

P=P_1+P_2

  当 \theta_2-\theta_1=\pi

    p=|A_1-A_2|^2<P_1+P_2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值