Visualizing and Understanding Convolutional Networks(精读)

这篇博客详细解析了《Visualizing and Understanding Convolutional Networks》文献,重点关注CNN的特征可视化、结构优化、遮挡敏感性、关联分析、通用特征提取及特征分析,揭示了CNN的工作原理和性能提升策略。
摘要由CSDN通过智能技术生成

一.文献名字和作者

     Visualizing and Understanding Convolutional Networks, ECCV2014
   

二.阅读时间

    2014年11月11日


三.文献的目的

    可视化CNN学习到的特征,并且从这些特征中找到改进神经网络的结构的方法。



四.文献的贡献点

4.1 特征可视化

    文献主要是提出了一种用于可视化卷积神经网络各个网络层学习到的特征的方法。
    通过对于特征的可视化分析,作者得出了下面的结论:1.底层特征在迭代次数比较少时就能收敛,高层需要的迭代次数比较多;2.CNN学习到的特征具有平移和缩放不变性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值