第八章 神经网络:表述(一)
第1节 动机(Motivations)
8.1 非线性假设
参考视频:8 - 1 - Non-linear Hypotheses (10 min).mkv
前面我们学习了逻辑回归,它们可以很好的解决一些线性的分类问题。但是对于非线性问题,它们很难画出分类边界线。如下图。
如果要实现非线性模型,需要增加模型复杂度(增加特征组合和特征多次项)。但是,当特征太多时,计算的负荷会非常大:假设我们的数据有100个特征,用这100个特征来构建一个非线性的多项式特征模型,特征组合会非常多。即使只采用两两特征的组合,也有将近5000个特征( C 100 2 C_{100}^2 C1002),这对逻辑回归来说需要计算的特征太多了。
再如在图像识别中,一个50×50像素的图片,每个元素当作一个特征的话,拥有的特征量为2500,那么它的二次项数为 C 2500 2 C_{2500}^2 C25002(大约为3百万个)特征。普通的逻辑回归模型不能有效地处理这么多特征,神经网络可以帮助我们。
8.2 神经元和大脑
参考视频:8 - 2 - Neurons and the Brain (8 min).mkv
神经网络是一种很古老的算法,它最初产生目制造能模拟最神奇的学习机器——人类的大脑。神经网络不仅在逻辑上行得通,之后我们会看到,而且也能很好地解决不同的机器学习问题。
神经网络逐渐兴起于二十世纪八九年代,应用得非常广泛。但由各种原因在90年代后期应用变少。最近,它又东山再起了。其中一个原因是:神经网络时计算量偏大的算法。然而由于近些年计算机的运行速度变快,才足以真正运行其大规模的神经网络。而且,如今的神经网络对于许多应用来说是最先进的技术。
我们能学习数学,学着做微积分,而且大脑能处理各种不同的令人惊奇的事情。似乎如果你想要模仿它,你得些很多不同的程序来模拟这些五花八门的事情。不过,能不能假设大脑做这些事情的方法仅仅需要一个单一的学习算法?尽管这是一个假设,不过确实有一些这方面的证据:事例略。
神经网络可能为我们打开一扇进入遥远的人工智梦窗户,但在这节课中讲授神经网络的原因主要是对于现代机器学习应用。它是最有效的计数方法,因此在接下来的课程中,我们将开始深入到神经网络的技术细节。
第2节 神经网络(Neural Networks)
8.3 模型表示1
参考视频:8 - 3 - Model Representation I (12 min).mkv
我们思考一下大脑中的神经网络:每一个神经元都包含一个神经核(nucleus),许多突触(dendrite)和一个轴突(axon)。它们分别被看作处理单元、输入单元和输出单元(processing unit、input unit、output unit)。神经网络是大量元相互连接并通过电脉冲来交流的一个网络。 神经元如下图:
神经网络建立在很多神经元上,我们把其中一个个神经元看作是一个个学习模型。这些神经元(也叫激活单元,activation unit)采纳一些特征作为输入,并根据自身的模型提供一个输出,或者说这些神经元具有计算功能。下图是一个以逻辑回归模型作为自身学习模型的神经元示例。在神经网络中,参数又可被称为权重(weights)。
上图中的偏差单元(bias unit) x 0 x_0 x0固定为1。 x 0 , x 1 , x 2 , x 3 x_0,x_1,x_2,x_3 x0,x1,x2,x3不进行计算,只向下一层提供数据。右边神经元采取的计算模型为 h θ ( x ) = 1 1 + e − θ T x h_{\theta}(x)=\frac{1}{1+e^{-\theta^Tx}} hθ(x)=1+e−θTx1,此处和逻辑回归相同。
下图是一个稍微复杂的三层神经网络:
神经网络是许多逻辑单元按照不同层级组织起来的网络,每一层的输出变量都是下一层的输入变量。对上图中的三层神经网络予以说明:
- 第一层(输入层,input layer): x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3是输入单元(input unit),增加偏差单元 x 0 x_0 x0并将其固定为1。输入层不进行计算,唯一功能是向下一层传递数据。
- 第二层或中间层(隐藏层,hidden layer):中间层负责接收上一层的数据 x 0 , x 1 , x 2 , x 3 x_0,x_1,x_2,x_3 x0,x1,x2,x3,经过计算后将结果 a 1 , a 2 , a 3 a_1,a_2,a_3 a1,a2,a3(增加偏差单元 a 0 = 1 a_0=1 a0=1)传递给下一层。
- 第三层(输出层,output layer):接收上一层的数据 a 0 , a 1 , a 2 , a 3 a_0,a_1,a_2,a_3 a0,a1,a2,a3,用来计算 h θ ( x ) h_{\theta}(x) hθ(x)。
- 神经元发出的箭头代表数据的流向,由一个神经元发出的不同箭头传递的是相同的数据。需要向下一层传递数据的层都需要增加偏差单元。
- 偏差单元不算激活单元,因为它是人为添加的,而且值固定为1。输入层的输入单元算不需要计算的激活单元,只需要向下一层传递数据。
- 神经网络命名:我们把需要计算的层次称之为“计算层”,一般把拥有一个计算层的网络称之为“单层神经网络”。在本文里,我们简单地根据神经网络的层数来命名。
下面引入一些标记法来帮助描述模型:
- a i ( j ) a_i^{(j)} ai(j): 第j层的第 i i i个激活单元。
- Θ ( j ) \Theta^{(j)} Θ(j): 从第 j j j层映射到第 j + 1 j+1 j+1层的权重矩阵。权重矩阵的尺寸为:以第 j + 1 j+1 j+1层的激活单元数为行数,以第 j j j层的激活单元数加1为列数。例如,上图所示的神经网络中的 θ ( 1 ) \theta^{(1)} θ(1)的尺寸为3*4。
对于上图所示的模型来说,中间层的激活单元 a 1 , a 2 , a 3 a_1,a_2,a_3 a1,a2,a3和输出 h θ ( x ) h_{\theta}(x) hθ(x)分别表达为: a 1 ( 2 ) = g ( Θ 10 ( 1 ) x 0 + Θ 11 ( 1 ) x 1 + Θ 12 ( 1 ) x 2 + Θ 13 ( 1 ) x 3 ) a 2 ( 2 ) = g ( Θ 20 ( 1 ) x 0 + Θ 21 ( 1 ) x 1 + Θ 22 ( 1 ) x 2 + Θ 23 ( 1 ) x 3 ) a 3 ( 2 ) = g ( Θ 30 ( 1 ) x 0 + Θ 31 ( 1 ) x 1 + Θ 32 ( 1 ) x 2 + Θ 33 ( 1 ) x 3 ) h Θ ( x ) = a 1 ( 3 ) = g ( Θ 10 ( 2 ) a 0 ( 2 ) + Θ 11 ( 2 ) a 1 ( 2 ) + Θ 12 ( 2 ) a 2 ( 2 ) + Θ 13 ( 2 ) a 3 ( 2 ) ) a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3) \\ a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3) \\ a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3) \newline h_\Theta(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)}) a1(2)=g(Θ10(1)x0+Θ11(1)x1+Θ12(1)x2+Θ13(1)x3)a2(2)=g(Θ20(1)x0+Θ21(1)x1+Θ22(1)x2+Θ23(1)x3)a3(2)=g(Θ30(1)x0+Θ31(1)x1+Θ32(1)x2+Θ33(1)x3)hΘ(x)=a1(3)=g(Θ10(2)a0(2)+Θ11(2)a1(2)+Θ12(2)a2(2)+Θ13(2)a3(2))
我们知道每个中间层的激活单元 a a a都是由上一层的输出决定的,我们把这样从左到右计算的过程称为正向传播算法(Forward Propagation)。
上面的讨论只是将数据集中的一个训练实例喂给了神经网络,而我们需要将整个数据集都喂给神经网络来进行学习。用矩阵形式来表示,把数据集 X X X中的一个实例 x x x从第一层到第二层的计算过程为: g ( Θ ( 1 ) ⋅ x ) = a ( 2 ) g(\Theta^{(1)} \cdot x) = a^{(2)} g(Θ(1)⋅x)=a(2),其中 x = [ x 0 x 1 x 2 x 3 ] Θ ( 1 ) = [ Θ 10 ( 1 ) Θ 11 ( 1 ) Θ 12 ( 1 ) Θ 13 ( 1 ) . . . Θ 23 ( 1 ) . . . Θ 33 ( 1 ) ] a ( 2 ) = [ a 1 ( 2 ) a 2 ( 2 ) a 3 ( 2 ) ] x=\begin{bmatrix}x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \Theta^{(1)}= \begin{bmatrix} \Theta^{(1)}_{10} & \Theta^{(1)}_{11} & \Theta^{(1)}_{12} & \Theta^{(1)}_{13} \\ . & . & . & \Theta^{(1)}_{23}\\ . & . & . & \Theta^{(1)}_{33} \end{bmatrix} a^{(2)}=\begin{bmatrix}a^{(2)}_1 \\ a^{(2)}_2 \\ a^{(2)}_3 \end{bmatrix} x=⎣⎢⎢⎡x0x1x2x3⎦⎥⎥⎤Θ(1)=⎣⎢⎡Θ10(1)..Θ11(1)..Θ12(1)..Θ13(1)Θ23(1)Θ33(1)⎦⎥⎤a(2)=⎣⎢⎡a1(2)a2(2)a3(2)⎦⎥⎤
8.4 模型表示2
参考视频 : 8 - 4 - Model Representation II (12 min).mkv
我们设置变量 z z z为:对于第2层, z k ( 2 ) = Θ k , 0 ( 1 ) x 0 + Θ k , 1 ( 1 ) x 1 + ⋯ + Θ k , n ( 1 ) x n z_k^{(2)} = \Theta_{k,0}^{(1)}x_0 + \Theta_{k,1}^{(1)}x_1 + \cdots + \Theta_{k,n}^{(1)}x_n zk(2)=Θk,0(1)x0+Θk,1(1)x1+⋯+Θk,n(1)xn
所以对于第2层的每一个单元, z 1 ( 2 ) = Θ 10 ( 1 ) x 0 + Θ 11 ( 1 ) x 1 + Θ 12 ( 1 ) x 2 + Θ 13 ( 1 ) x 3 z 2 ( 2 ) = Θ 20 ( 1 ) x 0 + Θ 21 ( 1 ) x 1 + Θ 22 ( 1 ) x 2 + Θ 23 ( 1 ) x 3 z 3 ( 2 ) = Θ 30 ( 1 ) x 0 + Θ 31 ( 1 ) x 1 + Θ 32 ( 1 ) x 2 + Θ 33 ( 1 ) x 3 z_1^{(2)} = \Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3 \newline z_2^{(2)} = \Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3 \newline z_3^{(2)} = \Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3 \newline z1(2)=Θ10(1)x0+Θ11(1)x1+Θ12(1)x2+Θ13(1)x3z2(2)=Θ20(1)x0+Θ21(1)x1+Θ22(1)x2+Θ23(1)x3z3(2)=Θ30(1)x0+Θ31(1)x1+Θ32(1)x2+Θ33(1)x3
则第二层的输出为 a 1 ( 2 ) = g ( z 1 ( 2 ) ) a 2 ( 2 ) = g ( z 2 ( 2 ) ) a 3 ( 2 ) = g ( z 3 ( 2 ) ) a_1^{(2)} = g(z_1^{(2)}) \newline a_2^{(2)} = g(z_2^{(2)}) \newline a_3^{(2)} = g(z_3^{(2)}) \newline a1(2)=g(z1(2))a2(2)=g(z2(2))a3(2)=g(z3(2))
前文 x x x和 z ( j ) z^{(j)} z(j)的标识如下: x = [ x 0 x 1 ⋯ x n ]    z ( j ) = [ z 1 ( j ) z 2 ( j ) ⋯ z n ( j ) ] x = \begin{bmatrix}x_0 \\ x_1 \\ \cdots \\ x_n\end{bmatrix} \; z^{(j)} = \begin{bmatrix}z_1^{(j)} \\ z_2^{(j)} \\ \cdots \\ z_n^{(j)}\end{bmatrix} x=⎣⎢⎢⎡x0x1⋯xn⎦⎥⎥⎤z(j)=⎣⎢⎢⎢⎡z1(j)z2(j)⋯zn(j)⎦⎥⎥⎥⎤
为了进一步统一符号标识,我们设置: x = a ( 1 ) x = a^{(1)} x=a(1)。所以:
- z ( j ) = Θ ( j − 1 ) a ( j − 1 ) z^{(j)} = \Theta^{(j-1)}a^{(j-1)} z(j)=Θ(j−1)a(j−1)
- a ( j ) = g ( z ( j ) ) a^{(j)} = g(z^{(j)}) a(j)=g(z(j))
所以输出层为 h Θ ( x ) = a ( j + 1 ) = g ( z ( j + 1 ) ) h_\Theta(x) = a^{(j+1)} = g(z^{(j+1)}) hΘ(x)=a(j+1)=g(z(j+1)),对于三层神经网络: h Θ ( x ) = a ( 3 ) = g ( z ( 3 ) ) h_\Theta(x) = a^{(3)} = g(z^{(3)}) hΘ(x)=a(3)=g(z(3))。这和逻辑回归中的模型是统一的。有没有一点小兴奋,哈哈哈。
其实神经网络就是逻辑回归,只不过我们把逻辑回归中的输入向量[x0,x1…x3]变成了神经网络中间层的[a1…a3]。我们可以把[a1…a3]看作更高级的特征,也就是[x0,x1…x3]的进化体。它比原来的特征厉害,能更好地预测新数据。这就是神经网络相比于逻辑回归和线性回归的优势。
P.S. 正向传播算法
正向传播算法比较容易理解,三层神经网络的算法如下:
用Matlab代码向量化实现三层神经网络的正向传播算法:
m = size(X, 1); % X为输入数据集
X = [ones(m, 1), X];
a1 = X;
z2 = a1 * Theta1';
a2 = sigmoid(z2);
a2 = [ones(m, 1), a2];
z3 = a2 * Theta2';
a3 = sigmoid(z3);
推荐资料: