Very Deep Convolutional Networks for Large-Scale Image Recognition(精读)

这篇博客详细解读了《Very Deep Convolutional Networks for Large-Scale Image Recognition》这篇文献,重点探讨了深度卷积网络在图像识别中的应用,包括训练和测试过程的改进,以及在图像定位上的贡献。博主还分享了实验所用的数据库和取得的实验结果。
摘要由CSDN通过智能技术生成

一.文献名字和作者

    Very Deep Convolutional Networks for Large-Scale Image Recognition. Karen Simonyan,Andrew Zisserman
   

二.阅读时间

    2014年11月4日


三.文献的目的

    文献的主要目的在于测试随着深度的加深,卷积神经网络对于大规模图像分类和定位的作用。


四.文献的贡献点

图像分类:
    作者通过实验发现,随着卷积层数的增加,卷积神经网络在ILSVRC-2014数据集上面的效果越来越好。
    在前面的文章中,有论文表明,使用小的卷积核和小的步长能够取得比较好的效果,并且有论文表明,在训练和测试过程中使用不同比例的图像作为输入,能够获得更好的效果。作者在前面提到的两个基础上,进一步研究深度对于分类正确率的影响。

4.1 两个讨论

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值