题目
给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。
分析
滑动窗口本身是一个队列,所以这道题用队列来解决。但是又因为要获取滑动窗口的最大值,则需要删除队尾那些不可能成为后面窗口最大值的数。
于是引入双端队列:
1.对于一个元素k,前面比k小的元素直接删除;
2.前面比k大的元素,比较两者的下标,若下标差距比size大了,也删除该元素
代码
import java.util.ArrayList;
import java.util.LinkedList;
public class Solution {
public ArrayList<Integer> maxInWindows(int [] num, int size)
{
ArrayList<Integer> list = new ArrayList<>();
if(num==null || num.length<size || size<1){
return list;
}
LinkedList<Integer> indexQueue = new LinkedList<>(); //引入一个双端队列,存放元素下标
for(int i=0; i<size-1; i++){ //先处理第一个滑动窗口构造完成之前的元素
while(!indexQueue.isEmpty() && num[i]>=num[indexQueue.getLast()]){
indexQueue.removeLast(); //移除掉那些无法成为后面窗口最大值的元素
}
indexQueue.addLast(i); //当前元素的下标入队
}
for(int j=size-1; j<num.length; j++){ //处理后面那些可以构成窗口的元素
while(!indexQueue.isEmpty() && num[j]>=num[indexQueue.getLast()]){
indexQueue.removeLast(); //移除掉那些无法成为后面窗口最大值的元素
}
indexQueue.addLast(j);
//此时,队首元素就是当前窗口的最大值(前提是它没有过期)
if(j-indexQueue.getFirst()+1 > size){ //队首元素过期了
indexQueue.removeFirst(); //移除队首元素
}
list.add(num[indexQueue.getFirst()]);
}
return list;
}
}