牛顿-雅可比迭代法是一种用于求解非线性方程和非线性方程组的数值方法。这种方法结合了牛顿法和雅可比矩阵的概念,旨在通过迭代方式逼近方程的根。牛顿法依赖于泰勒展开和线性近似来快速找到方程根的近似值,而雅可比矩阵则提供了一种处理多变量函数的方式,使得该方法可以广泛应用于求解多维非线性问题。
1 牛顿法原理
牛顿法基于以下原理:假设你想找到一个函数 f ( x ) = 0 f(x)=0 f(x)=0的根,可以从一个初始猜测值 x 0 x_0 x0 开始,然后使用函数在该点的泰勒展开的线性部分来找到一个更好的近似。数学上,这可以表示为: x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1}=x_n-\frac{f(x_n)}{f^{\prime}(x_n)} xn+1=xn−f′(xn)f(xn)
其中 x n + 1 x_{n+1} xn+1是下一个近似根, x n x_n xn 是当前的近似根, f ′ ( x n ) f^{\prime}(x_n) f′(xn)是函数在 x n x_n xn点的导数。
2 雅可比矩阵
雅可比矩阵是一个非常重要的概念,用于描述多变量函数相对于其各自变量的一阶偏导数。它是多维非线性系统分析中的核心工具,因为它提供了一种量化函数输出相对于输入变化率的方法。在牛顿-雅可比迭代法中,雅可比矩阵的作用是帮助我们理解多变量函数在某一点附近的行为,从而指导我们如何调整变量以逼近方程的根。
对于由