TensorFlow2.0之CIFAR10实战

TensorFlow2.0之CIFAR10实战

import tensorflow as tf
from tensorflow.keras import layers, Sequential, datasets, optimizers
import os
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession

config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.random.set_seed(2345)

# 加载CIFAR10数据集
(x, y), (x_test, y_test) = datasets.cifar10.load_data()
# print(x.shape, y.shape, x_test.shape, y_test.shape)
# 删除y的一个维度,[b,1] => [b],删除横向值为1的维度
y = tf.squeeze(y, axis=1)
y_test = tf.squeeze(y_test, axis=1)
# print(x.shape, y.shape, x_test.shape, y_test.shape)


# 预处理,把数据压缩在小区间,保证梯度
def preprocess(x, y):
    x = 2 * tf.cast(x, dtype=tf.float32) / 255. - 1
    y = tf.cast(y, dtype=tf.int32)
    return x, y


# 构建训练集对象,随机打乱,预处理,批量化
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.shuffle(1000).map(preprocess).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
test_db = test_db.map(preprocess).batch(64)
# 从训练集中采样一个Batch,并观察
sample = next(iter(train_db))
# print('sample:', sample[0].shape, sample[1].shape, tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))
conv_layers = [
    # Conv-Conv-Pooling 单元1,输出通道提升至 64,高宽大小减半
    layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu, ),
    layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
    # Conv-Conv-Pooling 单元 2,输出通道提升至 128,高宽大小减半
    layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
    # Conv-Conv-Pooling 单元 3,输出通道提升至 256,高宽大小减半
    layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
    # Conv-Conv-Pooling 单元 4,输出通道提升至 512,高宽大小减半
    layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
    # Conv-Conv-Pooling 单元 5,输出通道提升至 512,高宽大小减半
    layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
    layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same')]


def main():
    # [b, 32, 32, 3] => [b, 1, 1, 512]
    conv_net = Sequential(conv_layers)
    # 利用前面创建的层列表构建网络容器
    conv_net = Sequential(conv_layers)
    # 创建3层全连接子网络
    fc_net = Sequential([layers.Dense(256, activation=tf.nn.relu),
                         layers.Dense(128, activation=tf.nn.relu),
                         layers.Dense(10, activation=None),
                         ])
    # build两个子网络,并打印网络参数信息
    conv_net.build(input_shape=[4, 32, 32, 3])
    fc_net.build(input_shape=[4, 512])
    conv_net.summary()
    fc_net.summary()
    optimizer = optimizers.Adam(lr=1e-4)

    # 列表合并,合并两个子网络的参数
    variables = conv_net.trainable_variables + fc_net.trainable_variables

    for epoch in range(50):
        for step, (x, y) in enumerate(train_db):
            with tf.GradientTape() as tape:
                # [b, 32, 32, 3] => [b, 1, 1, 512]
                out = conv_net(x)
                # flatten => [b, 512]
                out = tf.reshape(out, [-1, 512])
                # [b, 512] => [b, 10]
                logits = fc_net(out)
                # [b, 512] => [b, 10]
                y_onehot = tf.one_hot(y, depth=10)
                loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
                loss = tf.reduce_mean(loss)
                # 对所有参数求梯度
                grads = tape.gradient(loss, variables)
                optimizer.apply_gradients(zip(grads, variables))

                if step %100 == 0:
                    print(epoch, step, 'loss', float(loss))

        total_num = 0
        total_correct = 0
        for x,y in test_db:
            out = conv_net(x)
            out = tf.reshape(out, [-1, 512])
            logits = fc_net(out)
            prob = tf.nn.softmax(logits, axis=1)
            pred = tf.argmax(prob, axis=1)
            pred = tf.cast(pred, dtype=tf.int32)
            correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
            correct = tf.reduce_sum(correct)
            total_num += x.shape[0]
            total_correct += int(correct)

        acc = total_correct / total_num
        print((epoch, 'acc', acc))


if __name__ == '__main__':
    main()














评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值