编程实现“斐波那契数列”的5种方法! | 经典面试题

本文探讨了编程实现斐波那契数列的五种方法,包括递归法、正推法、通项公式法、减治法和查表法。递归法存在重复计算问题,正推法时间复杂度为O(n);通项公式法实际仍需计算a^n,减治法求a^n的时间复杂度为O(lg(n)),查表法空间换时间为O(1)。文章强调思路的重要性,建议面试中谨慎使用通项公式法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编程求值斐波那契数列f(n),是面试中,非常常见的题目。

什么是斐波那契数列?

斐波那契数列是这样一个数列,它满足:

f(0) = 0;

f(1) = 1;

f(n) = f(n-1) + f(n-2)  (当n>=2时)

到底有几种方法,这些思路里蕴含的优化思路究竟是怎么样的,今天和大家聊一聊。

一、递归法

伪代码

uint32_t f(uint32_t n){

    if(n==0) return 0;

    if(n==1) return 1;

    return f(n-1)+f(n-2);

}

思路:这是一个递归的代码,非常清晰,直接把斐波那契数列的定义翻译成了代码。

例如

假设要求f(5)

f(5) = f(4) + f(3);

于是会递归计算f(4)和f(3);

接着要求f(4)

f(4) = f(3)+ f(2);

于是会递归计算f(3)和f(2);

可以看到,计算f(5)和f(4)中都要计算f(3),但这两次f(3)会重复计算,这就是递归的最大问题,对于同一个f(a),不能复用。

计算一个f(n)到底需要有多少次递归调用呢?

我们可以在代码里加一个计数验证一下。

伪代码

static uint32_t count=0; // 加一个全局变量计数

uint32_t f(uint32_t n){

    count++;  // 递归一次,计数加一

    if(n==0) return 0;

    if(n==1) return 1;

    return f(n-1)+f(n-2);

}

实验的结果

f(5) count = 15

f(10) count = 177

f(15) count = 1K+

f(20) count = 2W+

f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值