暴力法求解“微信群覆盖”?

题目:求微信群覆盖

微信有很多群,现进行如下抽象:

(1) 每个微信群由一个唯一的gid标识;

(2) 微信群内每个用户由一个唯一的uid标识;

(3) 一个用户可以加入多个群;

(4) 群可以抽象成一个由不重复uid组成的集合,例如:

g1{u1, u2, u3}

g2{u1, u4, u5}

可以看到,用户u1加入了g1与g2两个群。

画外音,注意:

gid和uid都是uint64;

集合内没有重复元素;

假设微信有M个群(M为亿级别),每个群内平均有N个用户(N为十级别).

现在要进行如下操作:

(1)  如果两个微信群中有相同的用户,则将两个微信群合并,并生成一个新微信群;

例如,上面的g1和g2就会合并成新的群:

g3{u1, u2, u3, u4, u5};

画外音:集合g1中包含u1,集合g2中包含u1,合并后的微信群g3也只包含一个u1。

(2) 不断的进行上述操作,直到剩下所有的微信群都不含相同的用户为止;

将上述操作称:求群的覆盖。

设计算法,求群的覆盖,并说明算法时间与空间复杂度。

画外音:58同城2013年校招笔试题。

对于一个复杂的问题,思路肯定是“先解决,再优化”,大部分人不是神,很难一步到位。先用一种比较“笨”的方法解决,再看“笨方法”有什么痛点,优化各个痛点,不断升级方案。

 

拿到这个问题,很容易想到的思路是:

(1) 先初始化M个集合,用集合来表示微信群gid与用户uid的关系;

(2) 找到哪两个(哪些)集合需要合并;

(3) 接着,进行集合的合并;

(4) 迭代步骤二和步骤三,直至所有集合都没有相同元素,算法结束;

 

第一步,如何初始化集合?

set这种数据结构,大家用得很多,来表示集合:

  • 新建M个set来表示M个微信群gid

  • 每个set插入N个元素来表示微信群中的用户uid

 

set有两种最常见的实现方式,一种是树型set,一种是哈希型set

 

假设有集合:

s={7, 2, 0, 14, 4, 12}

 

树型set的实现如下:

其特点是:

  • 插入和查找的平均时间复杂度是O(lg(n))

  • 能实现有序查找

  • 省空间

 

哈希型set实现如下:

其特点是:

  • 插入和查找的平均时间复杂度是O(1)

  • 不能实现有序查找

画外音:求群覆盖,哈希型实现的初始化更快,复杂度是O(M*N)。

 

第二步,如何判断两个(多个)集合要不要合并?

集合对set(i)和set(j),判断里面有没有重复元素,如果有,就需要合并,判重的伪代码是:

// 对set(i)和set(j)进行元素判断并合并

(1)    foreach (element in set(i))

(2)    if (element in set(j))

         merge(set(i), set(j));

 

第一行(1)遍历第一个集合set(i)中的所有元素element;

画外音:这一步的时间复杂度是O(N)。

第二行(2)判断element是否在第二个集合set(j)中;

画外音:如果使用哈希型set,第二行(2)的平均时间复杂度是O(1)。

 

这一步的时间复杂度至少是O(N)*O(1)=O(N)。

 

第三步,如何合并集合?

集合对set(i)和set(j)如果需要合并,只要把一个集合中的元素插入到另一个集合中即可:

// 对set(i)和set(j)进行集合合并

merge(set(i), set(j)){

(1)    foreach (element in set(i))

(2)    set(j).insert(element);

}

第一行(1)遍历第一个集合set(i)中的所有元素element;

画外音:这一步的时间复杂度是O(N)。

第二行(2)把element插入到集合set(j)中;

画外音:如果使用哈希型set,第二行(2)的平均时间复杂度是O(1)。

 

这一步的时间复杂度至少是O(N)*O(1)=O(N)。

 

第四步:迭代第二步与第三步,直至结束

对于M个集合,暴力针对所有集合对,进行重复元素判断并合并,用两个for循环可以暴力解决:

(1)for(i = 1 to M)

(2)    for(j= i+1 to M)

         //对set(i)和set(j)进行元素判断并合并

         foreach (element in set(i))

         if (element in set(j))

         merge(set(i), set(j));

 

递归调用,两个for循环,复杂度是O(M*M)。

 

综上,如果这么解决群覆盖的问题,时间复杂度至少是:

O(M*N) // 集合初始化的过程

+

O(M*M) // 两重for循环递归

*

O(N) // 判重

*

O(N) // 合并

画外音:实际复杂度要高于这个,随着集合的合并,集合元素会越来越多,判重和合并的成本会越来越高。

 

基于“先解决,再优化”的思想,很多优化方向的问题,自然而然的从脑中蹦出:

(1) 能不能快速通过元素定位集合?

画外音:

通过集合查元素,哈希型set时间复杂度是O(1);

通过元素查集合(句柄),如何来实现呢?

(2) 能不能快速进行集合合并?

(3) 能不能一次合并多个集合?

 

经典数据结构,分离集合(disjoint set),它有三类操作:

Make-set(a):生成一个只有一个元素a的集合;

Union(X, Y):合并两个集合X和Y;

Find-set(a):查找元素a所在集合,即通过元素找集合;

特别适合用来解决这类集合合并与查找的问题,又称为并查集

 

如何利用并查集来解决求“微信群覆盖”问题,是后文将要介绍的内容。

画外音:先介绍“并查集”这一种方案,后续再介绍其他方案。

 

知道并查集的思路和原理,比知道什么是并查集更重要。

算法,其实还是挺有意思的。

架构师之路-分享可落地的技术文章

相关推荐:

拜托,面试别再问我TopK了!

拜托,面试别再问我数1了!

拜托,面试别再问我斐波那契数列了!

世界上最漂亮的排序算法!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值