100人坐飞机,第一个乘客在座位中随便选一个坐下,第100人正确坐到自己坐位的概率是?

这篇博客探讨了一个有趣的概率问题:100名乘客中有1名疯子随机选择座位,求第100名乘客坐到自己座位的概率。通过递归分析,得出无论人数多少,最后一名乘客坐对的概率始终为1/2。问题的关键在于疯子的选择不影响其他人找到正确座位的顺序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

100人坐飞机,第一个乘客在座位中随便选一个坐下,第100人正确坐到自己坐位的概率是?

他们分别拿到了从1号到100号的座位,这些乘客会按号码顺序登机并应当对号入座,如果他们发现对应号座位被别人坐了,就会在剩下空的座位随便挑一个坐.现在假设1号乘客疯了(其他人没疯),他会在100个座位中随便选一个座位坐下,问:第100人正确坐到自己坐位的概率是多少?(也可推广到n名乘客n个座位的情况)

 

把握一个前提:隐含最后一个坐对,再去考虑概率。

思路:一旦1号疯子选到了1号座位,那么最后一个乘客一定坐对!一旦1号选了i号座位,从2 ~ i-1号一定是选对的,只需要考虑i~n的情况

1.如果只有两个人,疯子坐到自己位置上的概率是1/2,最后一个坐到正确位置的是1/2

2.如果3个人,第一种情况,1号疯子坐到1号座位位置概率为1/3,最后一个人座位一定正确;第二种情况,1号坐到2号座位概率为1/3,第2个选到1号位置为1/2,此时3号坐正确。 概率P=1/3+ 1/3 * 1/2=1/2

3.类推4个人,  情况1:1号疯子坐对。情况2:1号坐到2号座位,2号选1号座位; 2号选3号座位,3号选1号座位,则3号一定选对。情况3:1号坐到3号座位,2号肯定坐对,3号选1号位置,4号肯定坐对!

 P(4)=1/4 + (1/4 * 1/3+ 1/4 * 1/3 * 1/2)  + 1/4 * 1/2  =  1/2

抽象出来:原题是1号随机选择,一旦选了第i号座位,那么就变成第i号进行随机选择。我们将P(i)设为1号选择第i号座位时,最后一个乘客选择正确的概率。

P(4) =\frac{1}{4} + \sum_{2}^{3} [P(i)*1/4] 递归 P(n) = \frac{1}{n} [1 + \sum_{2}^{n-1} P(i) ]

以下等式成立

1. P(n-1) = 1/(n-1) [1 + P(n-2) + P(n-3) + P(n-4) + P(n-5).......+ P(2)]

2. P(n) = 1/n [1 + P(n-1) + P(n-2) + P(n-3) + P(n-4) + P(n-5).......+ P(2)]

变形:

(n-1)P(n-1) = 1 + P(n-2) + P(n-3) + P(n-4) + P(n-5).......+ P(2)

 n P(n)= 1 + P(n-1) + P(n-2) + P(n-3) + P(n-4) + P(n-5).......+ P(2)

以上两式相减

nP(n) - (n-1)P(n-1) =P(n-1)

nP(n) = nP(n-1)

P(n) =P(n-1)

那么类推

P(n)=P(n-1)=....=P(2)=1/2

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值