线性代数带参数的线性方程组的求法示例详解

本文详细介绍了线性方程组的求解方法,包括增广矩阵的概念及其在求解过程中的应用。通过具体示例展示了如何利用行变换找到方程组的解。同时,探讨了矩阵的秩对线性方程组解的存在性和唯一性的影响,以及如何判断解的情况。最后,给出了一个线性方程组的解法分析,涵盖了唯一解、无解和无穷解的情形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性方程组的求法与示例详解

线性方程组

由n个1维未知量,m个方程组成的组合叫做线性方程组。

特别的当方程组右边的值全都是0时叫做齐次线性方程组。

增广矩阵

在系数矩阵的右边添上一列,该列由线性方程组等号右边的值按照顺序拼接而成,该新的矩阵叫做方程组的增广矩阵。针对如下线性方程组,我们不难得到

其系数矩阵(即由每个未知量前的系数按照顺序组成的矩阵)是

而我们假设一列(方程组右边的值)构成新的矩阵即叫做该方程组的增广矩阵

或者更一般的,如果我们把线性方程组简写为Ax=b那么增广矩阵B可以记作(A,b)。

矩阵的秩

设在m×n的矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式全等于0,则D是该矩阵的最高阶非零子式。非零子式的最高阶数即叫做矩阵的秩 记作R(A) r是rank的缩写。不难发现矩阵的秩有如下特点:

  • 矩阵的秩 R(A)大于等于0小于等于min{m,n}。
  • r(A) = m 取了所有的行,叫行满秩
  • r(A) = n 取了所有的列,叫列满秩
  • r(A) < min{m,n}则叫做降秩
  • A是方阵,A满秩的充要条件是A是可逆的(转换为A的行列式不等于0,所以可逆)
  • r(A) = r的充要条件是有一个r阶子式不为0,所有r+1阶子式为0
  • 矩阵A(m乘n阶)左乘m阶可逆矩阵P,右乘n阶可逆矩阵Q,或者左右乘可逆矩阵PAQ不改变其秩。
  • 对矩阵实施(行、列)初等变换不改变矩阵的秩
  • 阶梯形矩阵的秩 r(A)等于非零行的行数。
  • A的秩等于A转置的秩
  • 任意矩阵乘可逆矩阵,秩不变

线性方程组与矩阵的秩

针对n元线性方程组Ax=b,它的解有如下情况:

  • 无解的充要条件是R(A)<R(A,b)
  • 有唯一解的充要条件是R(A)=R(A,b)=n
  • 有无穷解得充要条件是R(A)=R(A,b)<n

带参数的线性方程组的求法

该方法是根据矩阵的秩的定义来求,如果找到k阶子式为0,而k-1阶不为0,那么k-1即该矩阵的秩。

#Sample1(示例一),针对下列线性方程组,讨论其解的情况:

当a和b分别取什么值时

  1. 线性方程组有唯一解
  2. 线性方程组无解
  3. 线性方程组有无穷解,并求出通解。

解:

针对情况一:

线性方程组有唯一解的充要条件是R(A)=R(A,b)=n

Step1:这里我们构造增广矩阵 =

Step2:第1行的-3倍加到第4行上去,则此时化为:

Step3:针对step2,以第2行为轴,将第2行的1倍加到第3、4行上去,则化为:

Step4:结合方程组唯一解条件,即R(A)=R(A,b)=n,这里n=4,那么比较容易得出a≠1时满足条件。即当a≠1时线性方程组有唯一解。

针对情况二:当R(A)<R(A,b)时无解,由Step3里化简后的阶梯矩阵可知

当a=1且b≠-1时R(A)=2,而R(A,b)=3即满足R(A)<R(A,b)。

所以a=1且b≠-1时线性方程组无解。

针对情况三:当R(A)=R(A,b)<n(n=4)时有无穷解。由Step3里化简后的阶梯矩阵可知

当a=1且b=-1时R(A)=2, R(A,b)=2,且都小于4,

所以当a=1且b=-1时线性方程组有无穷解。

关于通解:

对Step3里接着化简,即将第1列的-1倍加到第2、3、4列上去,则得到:

那么我们容易得到原线性方程组等价于下式:

 

那么该线性方程组的一般解

其中 为任意常数。

ESP32-S3在STA模式下设置静态IP通常涉及到配置网络接口的接口配置结构体,比如`esp_netif_t`。以下是一个基本步骤: 1. 首先,你需要在你的应用程序初始化阶段包含必要的头文件,如`esp_wifi.h`和`esp_netif.h`。 ```c #include "esp_wifi.h" #include "esp_netif.h" ``` 2. 定义你的静态IP、子网掩码、默认网关和DNS服务器地址。例如: ```c static const char* ssid = "your_SSID"; static const char* password = "your_PASSWORD"; static ip4_addr_t static_ip = { IP4_ADDR(192, 168, 1, 100) }; // 你的静态IP static ip4_addr_t subnet_mask = { IP4_ADDR(255, 255, 255, 0) }; static ip4_addr_t gateway = { IP4_ADDR(192, 168, 1, 1) }; static ip4_addr_t dns_server = { IP4_ADDR(8, 8, 8, 8)}; // 示例DNS服务器地址 ``` 3. 初始化WiFi模块,并连接到指定的SSID: ```c esp_err_t ret = esp_wifi_init(); if (ret == ESP_OK) { wifi_config_t wifi_config = { .sta = { .ssid = ssid, .password = password, .bssid_set = false, // 如果你知道AP的BSSID可以设置为true }, }; ret = esp_wifi_set_mode(WIFI_MODE_STA); if (ret == ESP_OK) { ret = esp_wifi_start(); if (ret == ESP_OK) { // 等待WiFi连接成功 while (!esp_wifi_get_connect_status() == WIFI_STATUS_CONNECTED) { vTaskDelay(pdMS_TO_TICKS(500)); } } } // 连接成功后再配置静态IP } ``` 4. 创建并配置静态IP网络接口: ```c esp_netif_create StaIf, NULL, &espnetif sta_if; if (esp_netif_create_data斯塔If(&sta_if)) { esp_netif_set_ip4(&sta_if, &static_ip, &subnet_mask, &gateway); esp_netif_set_dhcp_client_data(&sta_if, NULL); // 关闭DHCP服务,使用静态IP esp_netif_set_dns_server_num(&sta_if, 1, &dns_server); esp_netif_start(&sta_if); } // 然后你可以开始发送和接收数据包了 ``` 记得检查错误代码`esp_err_t`,处理可能出现的问题。此外,如果ESP32-S3需要访问互联网,你还可能需要配置路由器的端口转发规则。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShenLiang2025

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值