# 机器学习概论
## 判断题
VC维是用来解决假设空间里的无限假设空间问题。 [正确]
基于实例的迁移学习的基本假设是源领域和目标领域中数据形式是相同的。[正确]
在所有聚类算法中,同一个对象只能属于一个类 [错误]
Boosting每一轮会增加分类错误样本的权重。[正确]
决策树ID3算法找到的是假设空间的局部最优解。[正确]
为了避免评估的偏差(bias),训练集和测试集应该相互独立。[正确]
高斯混合模型中各个分布是独立同分布的。[错误]
伯努利分布下很容易计算置信区间,但正态分布下就难以计算置信区间。[错误]
聚类的相似度度量需要满足传递性 [正确]
不可知学习器、一致学习器、VC维等可以用来计算样本的复杂度。[正确]
一般来讲,基于实例的迁移学习将数量较多的源领域数据的知识迁移到目标领域。[正确]
核函数需要通过显式的输入空间到特征空间的映射来表示。[错误]
隐马尔可夫模型主要要解决评估问题和解码问题两个问题。[正确]
EM问题可以求解缺少标签情况下的极大似然。[错误]
支持向量机属于贝叶斯分类器。[错误]
## 单选题
如果一个维度为d的样本不能被假设空间打散,那么假设空间的VC维为?[D]
A d+1
B d-1
C d
D 不确定 [选D]
VC维是用来解决什么假设空间里的问题的?[C]
A 不可知空间
B 有限假设空间
C 无限假设空间
D 样本空间
集成学习对弱监督器的要求是?[A]
A 效果要好于随机
B 任意效果即可
C 效果一定大于1/2
D 效果可以等于随机
下列哪项是贝叶斯公式[B]
A P(h|D)=P(D|h)P(D)/P(h)
B P(h|D)=P(D|h)P(h)/P(D)
C P(h|D)=P(D)P(h)/P(D|h)
D P(h|D)=P(D)P(h)
下列哪项是极大后验假设
A h=argmax(h){P(D|h)P(h)}[选A]
B h=argmax(h){P(h|D)P(h)}
C h=argmax(h){P(D|h)P(D)}
D h=argmax(h){P(D|h)}[不选D]
为了避免评估的
机器学习概论
最新推荐文章于 2022-07-27 09:24:57 发布