新手小白深度学习第P3周:天气识别

⭐本文为365天深度学习训练营的学习记录博客
⭐原作者为K同学啊

基础配置

🏡 我的环境:

● 语言环境:Python3.8
● 编译器:jupyter notebook
● 深度学习环境:Pytorch
数据:🔗百度网盘(提取码:hqij )

一、前期准备

1.设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib,random

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

输出:

device(type='cpu')

2.导入数据

data_dir = './weather_photos/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames

输出:

['cloudy', 'rain', 'shine', 'sunrise']

● 第一步:使用**pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。
● 第二步:使用
glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。
● 第三步:通过
split()**函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames中
● 第四步:打印classeNames列表,显示每个文件所属的类别名称。

import matplotlib.pyplot as plt
from PIL import Image

# 指定图像文件夹路径
image_folder = './weather_photos/sunrise/'

# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]

# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))

# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')

# 显示图像
plt.tight_layout()
plt.show()

在这里插入图片描述上段代码使用了matplotlib.pyplot库和PIL库来加载和显示指定文件夹中的图像文件。首先,指定了图像文件夹的相对路径image_folder = ‘./weather_photos/sunrise/’。

然后,使用os.listdir()函数和列表推导式来获取图像文件夹中所有以.jpg、.png或.jpeg结尾的文件。这些文件被存储在image_files列表中。

接下来,创建了一个matplotlib图像并指定了子图的布局。fig, axes = plt.subplots(3, 8, figsize=(16, 6))表示创建一个包含3行8列子图的图像,指定了图像的大小为(16, 6)。

然后,使用zip()函数将axes.flat和image_files进行迭代,将每个子图对象和对应的图像文件进行配对。

在迭代过程中,使用os.path.join()函数将图像文件的路径与图像文件夹路径连接起来,得到完整的图像文件路径。然后,使用PIL库的Image.open()函数来打开图像文件,并将其存储在img变量中。

接下来,使用ax.imshow()函数将图像显示在对应的子图上,并使用ax.axis(‘off’)将子图的坐标轴关闭。

最后,使用plt.tight_layout()函数来自动调整子图的布局,使其更好地适应图像的大小,并使用plt.show()函数来显示图像。

这段代码的目的是加载和显示指定文件夹中的图像文件,并将其以3行8列的形式显示在一个matplotlib图像中。你可以根据需要修改图像文件夹的路径和子图的布局来适应你的数据。

total_datadir = './weather_photos/'

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

代码片段展示了如何在PyTorch中使用transforms.Compose()。

transforms.Compose()是一个类,用于将多个图像转换操作链接在一起。在这个例子中,转换操作包括将输入图像调整大小到指定尺寸、将图像转换为张量,并对图像进行标准化。

train_transforms变量使用transforms.Compose()定义,并包括以下转换操作:

transforms.Resize([224, 224]):将输入图像调整大小为224x224像素。

transforms.ToTensor():将PIL图像或numpy数组转换为张量,并将像素值归一化到0和1之间。

transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):通过减去均值并除以标准差对图像进行标准化。这里使用的均值和标准差值是从数据集中计算得出的常用值。

然后使用datasets.ImageFolder()函数从total_datadir目录中的图像创建一个数据集对象。通过传递transform=train_transforms参数,将定义的转换操作应用于数据集中的图像。
输出:

Dataset ImageFolder
    Number of datapoints: 1125
    Root location: ./weather_photos/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

3.划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

首先,根据总数据集的长度计算训练集的大小,其中训练集占总数据集的80%。然后,计算测试集的大小,即总数据集长度减去训练集的大小。

接下来,使用 torch.utils.data.random_split() 函数将总数据集 total_data 随机分割为训练集和测试集。传递给该函数的参数是总数据集 total_data 和一个包含训练集大小和测试集大小的列表 [train_size, test_size]。

最后,将分割后的训练集和测试集分配给变量 train_dataset 和 test_dataset。

输出:

(<torch.utils.data.dataset.Subset at 0x2464c4f26e0>,
 <torch.utils.data.dataset.Subset at 0x2464c4f1d50>)
train_size,test_size

输出:

(900, 225)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)

代码片段展示了如何使用 torch.utils.data.DataLoader 将训练集和测试集转换为可迭代的数据加载器。

首先,定义了一个批处理大小 batch_size,表示每个批次中的样本数量。

然后,使用 torch.utils.data.DataLoader 函数创建训练集的数据加载器 train_dl。将训练集 train_dataset 作为第一个参数传递给函数。设置 batch_size=batch_size 来指定每个批次中的样本数量。shuffle=True 表示在每个 epoch(训练轮次)开始时对训练集进行洗牌,以随机化样本的顺序。num_workers=1 表示使用一个工作线程来加载数据。

同样地,使用 torch.utils.data.DataLoader 函数创建测试集的数据加载器 test_dl。将测试集 test_dataset 作为第一个参数传递给函数。设置 batch_size=batch_size 来指定每个批次中的样本数量。shuffle=True 表示在每个 epoch(训练轮次)开始时对测试集进行洗牌,以随机化样本的顺序。num_workers=1 表示使用一个工作线程来加载数据。

通过这样的方式,训练集和测试集被转换为了可以用于迭代的数据加载器,以便在训练模型时以批次的方式加载数据。

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

for X, y in test_dl: 表示对测试集的数据加载器进行迭代,每次迭代返回一个批次的数据。

X 表示输入数据的张量,y 表示对应的标签张量。在每次迭代中,打印出 X 的形状信息,即 [N, C, H, W],其中 N 表示批次大小(样本数量),C 表示通道数,H 表示图像高度,W 表示图像宽度。

y 的形状信息和数据类型也被打印出来,包括形状信息 y.shape 和数据类型 y.dtype。

break 语句用于跳出循环,只打印第一个批次的形状信息,以避免打印整个测试集的信息。
输出:

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

二、构建简单的CNN网络

在这里插入图片描述

import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*50*50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model

大家注意一下在卷积层和全连接层之间,我们可以使用之前是torch.flatten()也可以使用我下面的x.view()亦或是torch.nn.Flatten()。torch.nn.Flatten()与TensorFlow中的Flatten()层类似,前两者则仅仅是一种数据集拉伸操作(将二维数据拉伸为一维),torch.flatten()方法不会改变x本身,而是返回一个新的张量。而x.view()方法则是直接在原有数据上进行操作。

输出:

Using cpu device
Network_bn(
  (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (fc1): Linear(in_features=60000, out_features=4, bias=True)
)

三、训练模型

1.设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2.编写训练函数

1. optimizer.zero_grad()

函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

2. loss.backward()

PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

3. optimizer.step()

step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3.编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4.正式训练

1. model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()。model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。

2. model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()。model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

输出:

Epoch: 1, Train_acc:54.8%, Train_loss:1.103, Test_acc:60.9%,Test_loss:0.989
Epoch: 2, Train_acc:73.6%, Train_loss:0.742, Test_acc:74.2%,Test_loss:0.627
Epoch: 3, Train_acc:80.9%, Train_loss:0.612, Test_acc:80.4%,Test_loss:0.621
Epoch: 4, Train_acc:82.8%, Train_loss:0.529, Test_acc:81.8%,Test_loss:0.490
Epoch: 5, Train_acc:85.7%, Train_loss:0.486, Test_acc:82.2%,Test_loss:0.450
Epoch: 6, Train_acc:87.2%, Train_loss:0.418, Test_acc:88.4%,Test_loss:0.405
Epoch: 7, Train_acc:88.1%, Train_loss:0.384, Test_acc:88.4%,Test_loss:0.438
Epoch: 8, Train_acc:89.6%, Train_loss:0.360, Test_acc:79.6%,Test_loss:0.452
Epoch: 9, Train_acc:90.7%, Train_loss:0.371, Test_acc:87.6%,Test_loss:0.349
Epoch:10, Train_acc:90.2%, Train_loss:0.346, Test_acc:89.3%,Test_loss:0.335
Epoch:11, Train_acc:90.8%, Train_loss:0.322, Test_acc:91.6%,Test_loss:0.308
Epoch:12, Train_acc:91.2%, Train_loss:0.321, Test_acc:88.0%,Test_loss:0.316
Epoch:13, Train_acc:92.6%, Train_loss:0.279, Test_acc:90.2%,Test_loss:0.333
Epoch:14, Train_acc:93.7%, Train_loss:0.260, Test_acc:88.4%,Test_loss:0.346
Epoch:15, Train_acc:91.6%, Train_loss:0.289, Test_acc:86.7%,Test_loss:0.323
Epoch:16, Train_acc:93.2%, Train_loss:0.263, Test_acc:83.1%,Test_loss:0.353
Epoch:17, Train_acc:93.1%, Train_loss:0.248, Test_acc:91.6%,Test_loss:0.296
Epoch:18, Train_acc:94.2%, Train_loss:0.236, Test_acc:90.2%,Test_loss:0.353
Epoch:19, Train_acc:94.7%, Train_loss:0.236, Test_acc:90.7%,Test_loss:0.322
Epoch:20, Train_acc:95.2%, Train_loss:0.206, Test_acc:91.6%,Test_loss:0.264
Done

四、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

五、个人总结

训练神经网络模型具体步骤:
1.初始化训练损失和正确率为0。
2.对于数据加载器中的每个批次,依次获取图片和标签。
3.将图片和标签转移到设备上(如GPU)。
4.使用模型进行预测,得到预测结果。
5.计算预测结果与真实标签之间的差距,得到损失。
6.将优化器的梯度置零。
7.进行反向传播,计算梯度。
8.更新模型的参数。
9.计算并记录训练精度和训练损失。
10.返回训练精度和训练损失。

   # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        

并不是很理解,于是查阅GPT得知:
optimizer.zero_grad()
optimizer.zero_grad()是一个用于将梯度归零的操作。在反向传播过程中,梯度会累积到模型的参数中。为了防止梯度的累积影响下一次的反向传播,需要在每次更新参数之前将梯度归零。
optimizer是优化器对象,它负责更新模型的参数。zero_grad()方法会将优化器中所有参数的梯度置零,以准备接收新一轮的反向传播计算的梯度。这样做是为了确保每次更新参数时,只使用当前批次的梯度,而不会受到之前批次的梯度的干扰。

梯度:
梯度是指函数在某个点上的变化率或斜率。在机器学习和深度学习中,梯度常常指的是损失函数关于模型参数的偏导数。梯度告诉我们在当前参数值处,沿着哪个方向能够让损失函数下降最快。通过计算损失函数对模型参数的梯度,可以确定参数的更新方向和大小,从而优化模型的性能。
在训练神经网络时,我们通过反向传播算法计算损失函数对网络中每个参数的梯度。这些梯度指示了网络中每个参数对于损失函数的贡献大小,进而确定了参数的更新方向。通过梯度下降算法或其变种,我们可以根据梯度的信息来更新网络参数,使得损失函数逐渐减小,从而提高模型的准确性和性能。

loss.backward()
loss.backward()是一个用于计算梯度并进行反向传播的操作。在神经网络中,反向传播是指从损失函数开始,按照链式法则计算网络中每个参数对于损失函数的梯度。
在深度学习中,我们通过最小化损失函数来优化模型的参数。反向传播是实现这一目标的关键步骤。在反向传播过程中,首先计算损失函数关于模型输出的梯度,然后通过链式法则计算出每个参数对于损失函数的梯度。这样,我们就能知道每个参数对于损失函数的变化方向和大小。
loss.backward()根据当前的损失值和模型参数,计算损失函数对于模型参数的梯度。然后,这些梯度会被存储在模型的各个参数张量的.grad属性中。最后,我们可以使用优化器对象(如torch.optim.SGD)来更新模型的参数,以便在训练过程中逐渐减小损失函数。

optimizer.step()
optimizer.step()是一个用于更新模型参数的操作。在深度学习中,优化器负责根据计算得到的梯度来更新模型的参数,以最小化损失函数。
在反向传播过程中,我们通过调用loss.backward()计算得到了模型参数的梯度。然后,optimizer.step()会根据这些梯度来更新模型的参数。具体而言,它会根据优化算法(如随机梯度下降、Adam等)和学习率等超参数的设定,按照特定的规则来更新参数的值。

过反复进行optimizer.zero_grad()、loss.backward()和optimizer.step()的操作,我们可以在训练过程中逐渐优化模型的参数,使得模型能够更好地拟合训练数据,提高模型的性能和准确性。

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值