新手小白深度学习第P2周:CIFAR10彩色图片识别

⭐本文为365天深度学习训练营的学习记录博客
⭐原作者为K同学啊

基础配置

🏡 我的环境:

● 语言环境:Python3.8
● 编译器:jupyter notebook
● 深度学习环境:Pytorch

一、前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

输出:

device(type='cpu')

2.导入数据

torchvision.datasets模块中的dataset函数是用于加载和处理常见的计算机视觉数据集的函数。该函数可以用来加载训练集和测试集,并提供了一些常用的预处理和数据增强操作。

参数说明:
root(string):数据集的根目录。
train(bool,可选):True表示加载训练集,False表示加载测试集,默认为True。
transform(callable,可选):对样本进行转换操作的函数或变换对象,默认为None。
target_transform(callable,可选):对标签进行转换操作的函数或变换对象,默认为None。
download(bool,可选):True表示如果数据集不存在,则从互联网下载数据,默认为False。

train_ds = torchvision.datasets.CIFAR10('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

需要注意的是,dataset函数只是一个基类,具体的数据集类如MNIST、CIFAR等都是继承自该基类,并提供了更具体的实现。可以根据需要选择不同的数据集类来加载不同的数据集。

输出:

Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to data\cifar-10-python.tar.gz
100.0%
Extracting data\cifar-10-python.tar.gz to data
Files already downloaded and verified

使用dataloader加载数据,并设置好基本的batch_size:

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)

数据加载器是用于将数据集按照指定的batch_size(批次大小)划分成小批量的样本,并可选择是否打乱数据顺序。

具体解释如下:
batch_size = 32:将训练集和测试集的样本划分为大小为32的小批量。

train_dl = torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True):创建一个训练集的数据加载器。

train_ds是训练集的数据集对象。
batch_size=batch_size:指定每个小批量的大小为32。
shuffle=True:表示在每个epoch(训练轮次)开始时,是否打乱训练集的样本顺序。
test_dl = torch.utils.data.DataLoader(test_ds, batch_size=batch_size):创建一个测试集的数据加载器。

test_ds是测试集的数据集对象。
batch_size=batch_size:指定每个小批量的大小为32。
通过使用数据加载器,可以方便地迭代访问训练集和测试集中的小批量样本,用于模型的训练和评估。

# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape

输出:

torch.Size([32, 3, 32, 32])

3.数据可视化

import numpy as np

 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
    
#plt.show()  如果你使用的是Pycharm编译器,请加上这行代码

在这里插入图片描述

二、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

⭐1. torch.nn.Conv2d()详解

函数原型:

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode=‘zeros’, device=None, dtype=None)

关键参数说明:

in_channels ( int ) – 输入图像中的通道数
out_channels ( int ) – 卷积产生的通道数
kernel_size ( int or tuple ) – 卷积核的大小
stride ( int or tuple , optional ) – 卷积的步幅。默认值:1
padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0
dilation (int or tuple, optional) - 扩张操作:控制kernel点(卷积核点)的间距,默认值:1。
padding_mode (字符串,可选) – ‘zeros’, ‘reflect’, ‘replicate’或’circular’. 默认:‘zeros’

关于dilation参数图解:
在这里插入图片描述
⭐2. torch.nn.Linear()详解

函数原型:

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

关键参数说明:

in_features:每个输入样本的大小
out_features:每个输出样本的大小

⭐3. torch.nn.MaxPool2d()详解

函数原型:

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

关键参数说明:

kernel_size:最大的窗口大小
stride:窗口的步幅,默认值为kernel_size
padding:填充值,默认为0
dilation:控制窗口中元素步幅的参数

⭐4. 关于卷积层、池化层的计算:

下面的网络数据shape变化过程为:

3, 32, 32(输入数据)
-> 64, 30, 30(经过卷积层1)-> 64, 15, 15(经过池化层1)
-> 64, 13, 13(经过卷积层2)-> 64, 6, 6(经过池化层2)
-> 128, 4, 4(经过卷积层3) -> 128, 2, 2(经过池化层3)
-> 512 -> 256 -> num_classes(10)
在这里插入图片描述

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(kernel_size=2) 
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool3 = nn.MaxPool2d(kernel_size=2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(512, 256)          
        self.fc2 = nn.Linear(256, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        
        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

三、训练模型

1.设置超参数

损失函数:
nn.CrossEntropyLoss() 是用于多分类问题的损失函数。
交叉熵损失函数在分类问题中常被使用,特别适合于多类别分类任务。
它将模型的输出与真实标签进行比较,并计算出模型输出的概率分布与真实标签之间的差异。
交叉熵损失函数的输出值越小,表示模型的预测结果与真实标签越接近。

优化器:
torch.optim.SGD() 是随机梯度下降(Stochastic Gradient Descent,SGD)优化器。
SGD是一种常用的优化算法,用于更新模型的参数以最小化损失函数。
model.parameters() 用于获取模型中需要优化的参数。
lr=learn_rate 是学习率参数,用于控制每次参数更新的步长。
优化器会根据损失函数的输出值和学习率,计算参数的梯度,并更新模型的参数。

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2.编写训练函数

1. optimizer.zero_grad()

函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

2. loss.backward()

PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

3. optimizer.step()

step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3.编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4.正式训练

1. model.train()
model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()。model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。
2. model.eval()
model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()。model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

输出:

Epoch: 1, Train_acc:61.5%, Train_loss:1.096, Test_acc:60.3%,Test_loss:1.138
Epoch: 2, Train_acc:63.1%, Train_loss:1.050, Test_acc:61.7%,Test_loss:1.080
Epoch: 3, Train_acc:64.7%, Train_loss:1.006, Test_acc:64.5%,Test_loss:1.019
Epoch: 4, Train_acc:66.2%, Train_loss:0.968, Test_acc:63.7%,Test_loss:1.029
Epoch: 5, Train_acc:67.5%, Train_loss:0.931, Test_acc:63.3%,Test_loss:1.052
Epoch: 6, Train_acc:68.9%, Train_loss:0.893, Test_acc:63.3%,Test_loss:1.043
Epoch: 7, Train_acc:70.1%, Train_loss:0.858, Test_acc:65.9%,Test_loss:0.985
Epoch: 8, Train_acc:71.3%, Train_loss:0.826, Test_acc:67.4%,Test_loss:0.942
Epoch: 9, Train_acc:72.3%, Train_loss:0.794, Test_acc:67.0%,Test_loss:0.944
Epoch:10, Train_acc:73.6%, Train_loss:0.762, Test_acc:65.3%,Test_loss:1.005
Done

四、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

五、个人总结

本次学习对卷积层,池化层,flatten层和全连接层及具体参数概念有了完全理解。对卷积神经网络流程熟悉。

卷积层可以理解为对图像进行特征提取,主要靠卷积核,

卷积核通过调整步长 (Stride)、零填充 (Zero Padding)与深度 (Depth)来实现不同模式的特征提取。

池化层的主要目的就是减少神经元的数量,常见的池化函数就是最大池化和平均池化。
1.最大池化就是取一个区域的所有神经元得到最大值。
2.平均池化就是取一个区域神经元的平均值。
个人理解为池化层可以一定程度减少数据量,及减少数据冗余,并且提高训练速度,同时避免过拟合。K同学啊教程中学习到池化层还具有鲁棒性

flatten层就是将多维数据压缩为一维向量,同时保留数据的所有信息,比如通道和位置信息。

全连接层作用就是对数据进行分类。

对于优化器的理解暂时还较为肤浅,待后续博客理解更加深入时会更新个人理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值