第P2周:CIFAR10彩色图片识别
⭐本文为365天深度学习训练营的学习记录博客
⭐原作者为K同学啊
基础配置
🏡 我的环境:
● 语言环境:Python3.8
● 编译器:jupyter notebook
● 深度学习环境:Pytorch
一、前期准备
1. 设置GPU
如果设备上支持GPU就使用GPU,否则使用CPU
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
输出:
device(type='cpu')
2.导入数据
torchvision.datasets模块中的dataset函数是用于加载和处理常见的计算机视觉数据集的函数。该函数可以用来加载训练集和测试集,并提供了一些常用的预处理和数据增强操作。
参数说明:
root(string):数据集的根目录。
train(bool,可选):True表示加载训练集,False表示加载测试集,默认为True。
transform(callable,可选):对样本进行转换操作的函数或变换对象,默认为None。
target_transform(callable,可选):对标签进行转换操作的函数或变换对象,默认为None。
download(bool,可选):True表示如果数据集不存在,则从互联网下载数据,默认为False。
train_ds = torchvision.datasets.CIFAR10('data',
train=True,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True)
test_ds = torchvision.datasets.CIFAR10('data',
train=False,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True)
需要注意的是,dataset函数只是一个基类,具体的数据集类如MNIST、CIFAR等都是继承自该基类,并提供了更具体的实现。可以根据需要选择不同的数据集类来加载不同的数据集。
输出:
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to data\cifar-10-python.tar.gz
100.0%
Extracting data\cifar-10-python.tar.gz to data
Files already downloaded and verified
使用dataloader加载数据,并设置好基本的batch_size:
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,
batch_size=batch_size,
shuffle=True)
test_dl = torch.utils.data.DataLoader(test_ds,
batch_size=batch_size)
数据加载器是用于将数据集按照指定的batch_size(批次大小)划分成小批量的样本,并可选择是否打乱数据顺序。
具体解释如下:
batch_size = 32:将训练集和测试集的样本划分为大小为32的小批量。
train_dl = torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True):创建一个训练集的数据加载器。
train_ds是训练集的数据集对象。
batch_size=batch_size:指定每个小批量的大小为32。
shuffle=True:表示在每个epoch(训练轮次)开始时,是否打乱训练集的样本顺序。
test_dl = torch.utils.data.DataLoader(test_ds, batch_size=batch_size):创建一个测试集的数据加载器。
test_ds是测试集的数据集对象。
batch_size=batch_size:指定每个小批量的大小为32。
通过使用数据加载器,可以方便地迭代访问训练集和测试集中的小批量样本,用于模型的训练和评估。
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape
输出:
torch.Size([32, 3, 32, 32])
3.数据可视化
import numpy as np
# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5))
for i, imgs in enumerate(imgs[:20]):
# 维度缩减
npimg = imgs.numpy().transpose((1, 2, 0))
# 将整个figure分成2行10列,绘制第i+1个子图。
plt.subplot(2, 10, i+1)
plt.imshow(npimg, cmap=plt.cm.binary)
plt.axis('off')
#plt.show() 如果你使用的是Pycharm编译器,请加上这行代码
二、构建简单的CNN网络
对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。
⭐1. torch.nn.Conv2d()详解
函数原型:
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode=‘zeros’, device=None, dtype=None)
关键参数说明:
● in_channels ( int ) – 输入图像中的通道数
● out_channels ( int ) – 卷积产生的通道数
● kernel_size ( int or tuple ) – 卷积核的大小
● stride ( int or tuple , optional ) – 卷积的步幅。默认值:1
● padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0
● dilation (int or tuple, optional) - 扩张操作:控制kernel点(卷积核点)的间距,默认值:1。
● padding_mode (字符串,可选) – ‘zeros’, ‘reflect’, ‘replicate’或’circular’. 默认:‘zeros’
关于dilation参数图解:
⭐2. torch.nn.Linear()详解
函数原型:
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
关键参数说明:
● in_features:每个输入样本的大小
● out_features:每个输出样本的大小
⭐3. torch.nn.MaxPool2d()详解
函数原型:
torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
关键参数说明:
● kernel_size:最大的窗口大小
● stride:窗口的步幅,默认值为kernel_size
● padding:填充值,默认为0
● dilation:控制窗口中元素步幅的参数
⭐4. 关于卷积层、池化层的计算:
下面的网络数据shape变化过程为:
3, 32, 32(输入数据)
-> 64, 30, 30(经过卷积层1)-> 64, 15, 15(经过池化层1)
-> 64, 13, 13(经过卷积层2)-> 64, 6, 6(经过池化层2)
-> 128, 4, 4(经过卷积层3) -> 128, 2, 2(经过池化层3)
-> 512 -> 256 -> num_classes(10)
import torch.nn.functional as F
num_classes = 10 # 图片的类别数
class Model(nn.Module):
def __init__(self):
super().__init__()
# 特征提取网络
self.conv1 = nn.Conv2d(3, 64, kernel_size=3) # 第一层卷积,卷积核大小为3*3
self.pool1 = nn.MaxPool2d(kernel_size=2) # 设置池化层,池化核大小为2*2
self.conv2 = nn.Conv2d(64, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3
self.pool3 = nn.MaxPool2d(kernel_size=2)
# 分类网络
self.fc1 = nn.Linear(512, 256)
self.fc2 = nn.Linear(256, num_classes)
# 前向传播
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = self.pool3(F.relu(self.conv3(x)))
x = torch.flatten(x, start_dim=1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
三、训练模型
1.设置超参数
损失函数:
nn.CrossEntropyLoss() 是用于多分类问题的损失函数。
交叉熵损失函数在分类问题中常被使用,特别适合于多类别分类任务。
它将模型的输出与真实标签进行比较,并计算出模型输出的概率分布与真实标签之间的差异。
交叉熵损失函数的输出值越小,表示模型的预测结果与真实标签越接近。
优化器:
torch.optim.SGD() 是随机梯度下降(Stochastic Gradient Descent,SGD)优化器。
SGD是一种常用的优化算法,用于更新模型的参数以最小化损失函数。
model.parameters() 用于获取模型中需要优化的参数。
lr=learn_rate 是学习率参数,用于控制每次参数更新的步长。
优化器会根据损失函数的输出值和学习率,计算参数的梯度,并更新模型的参数。
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
2.编写训练函数
1. optimizer.zero_grad()
函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。
2. loss.backward()
PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。
具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。
更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。
如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。
3. optimizer.step()
step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。
注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
3.编写测试函数
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
4.正式训练
1. model.train()
model.train()的作用是启用 Batch Normalization 和 Dropout。
如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()。model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。
2. model.eval()
model.eval()的作用是不启用 Batch Normalization 和 Dropout。
如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()。model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。
训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。
epochs = 10
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
输出:
Epoch: 1, Train_acc:61.5%, Train_loss:1.096, Test_acc:60.3%,Test_loss:1.138
Epoch: 2, Train_acc:63.1%, Train_loss:1.050, Test_acc:61.7%,Test_loss:1.080
Epoch: 3, Train_acc:64.7%, Train_loss:1.006, Test_acc:64.5%,Test_loss:1.019
Epoch: 4, Train_acc:66.2%, Train_loss:0.968, Test_acc:63.7%,Test_loss:1.029
Epoch: 5, Train_acc:67.5%, Train_loss:0.931, Test_acc:63.3%,Test_loss:1.052
Epoch: 6, Train_acc:68.9%, Train_loss:0.893, Test_acc:63.3%,Test_loss:1.043
Epoch: 7, Train_acc:70.1%, Train_loss:0.858, Test_acc:65.9%,Test_loss:0.985
Epoch: 8, Train_acc:71.3%, Train_loss:0.826, Test_acc:67.4%,Test_loss:0.942
Epoch: 9, Train_acc:72.3%, Train_loss:0.794, Test_acc:67.0%,Test_loss:0.944
Epoch:10, Train_acc:73.6%, Train_loss:0.762, Test_acc:65.3%,Test_loss:1.005
Done
四、结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
五、个人总结
本次学习对卷积层,池化层,flatten层和全连接层及具体参数概念有了完全理解。对卷积神经网络流程熟悉。
卷积层可以理解为对图像进行特征提取,主要靠卷积核,
卷积核通过调整步长 (Stride)、零填充 (Zero Padding)与深度 (Depth)来实现不同模式的特征提取。
池化层的主要目的就是减少神经元的数量,常见的池化函数就是最大池化和平均池化。
1.最大池化就是取一个区域的所有神经元得到最大值。
2.平均池化就是取一个区域神经元的平均值。
个人理解为池化层可以一定程度减少数据量,及减少数据冗余,并且提高训练速度,同时避免过拟合。K同学啊教程中学习到池化层还具有鲁棒性。
flatten层就是将多维数据压缩为一维向量,同时保留数据的所有信息,比如通道和位置信息。
全连接层作用就是对数据进行分类。
对于优化器的理解暂时还较为肤浅,待后续博客理解更加深入时会更新个人理解。