概率论基础

贝叶斯公式

p(Bi|A)=p(A|Bi)p(Bi)nj=1p(A|Bj)p(Bj),i=1,2,3,,n. p ( B i | A ) = p ( A | B i ) p ( B i ) ∑ j = 1 n p ( A | B j ) p ( B j ) , i = 1 , 2 , 3 , ⋯ , n .

当n取2的时候, B2 B 2 表示的就是事件 B B 的逆事件B^,所以有

p(B|A)=p(B)p(A|B)p(B)p(A|B)+p(B^)p(A|B^) p ( B | A ) = p ( B ) p ( A | B ) p ( B ) p ( A | B ) + p ( B ^ ) p ( A | B ^ )


事件的独立性

设A、B是两事件,如果满足等式

p(AB)=p(A)p(B) p ( A B ) = p ( A ) p ( B ) ,

则称事件A、B相互独立。


离散型随机变量及其分布律

(一) 离散型

对于离散型,这里只记录一下泊松分布。

泊松分布

设随机变量 X X 所有可能的值为 0,1,2,3,,而取各个值的概率为

p{X=k}=λkekk!,k=1,2,3,,n, p { X = k } = λ k e − k k ! , k = 1 , 2 , 3 , ⋯ , n ,

其中 λ>0 λ > 0 是常数。则称 X X 服从参数为λ的泊松分布,记为 Xπ(λ) X ∼ π ( λ ) .
泊松定理 λ>0 λ > 0 是一个常数,n是任意正整数,设 npn=λ n p n = λ ,则对于任一固定的非负整数 k k ,有

limk(kn)pnk(1p)nnk=λkekk!.

定理的条件是 np=λ() n p = λ ( 常 数 ) 意味着当 n n 很大时 p 会很小,因此,上述定理表明对于一个二项分布,当其试验次数足够大,且其所试验事件的发生概率足够小时有以下近似式

Cknpk(1p)nkλkekk!. C n k p k ( 1 − p ) n − k ≈ λ k e − k k ! .

(二) 非离散型

通常非离散型随机变量取任一指定的实数值的概率都等于0。
X X 是一个随机变量, x 是任意实数,函数

F(x)=P{Xx},x(,+). F ( x ) = P { X ≤ x } , x ∈ ( − ∞ , + ∞ ) .

称为 X X 的分布函数。且

p{x1<Xx2}=F(x2)F(x1).

对于随机变量 X X 的分布函数 F(x),存在非负可积函数 f(x) f ( x ) 使对于任意实数 x x

F(x)=xf(t)dt

函数 f(t) f ( t ) 称为分布函数的概率密度,且

1. +f(t)dt=1,f(x)0, ∫ − ∞ + ∞ f ( t ) d t = 1 , f ( x ) ≥ 0 ,

2. f(x)0, f ( x ) ≥ 0 ,

3. p{x1<Xx2}=F(x2)F(x1)=x2x1f(t)dt, p { x 1 < X ≤ x 2 } = F ( x 2 ) − F ( x 1 ) = ∫ x 1 x 2 f ( t ) d t ,

4. F(x)=f(x). F ′ ( x ) = f ( x ) .

对于非离散型的且为连续型的随机变量 X X 只在此记录指数分布和正太分布这两种。

(1) 指数分布

若连续型随机变量 X 的概率密度为

f(x)={1θexθ,x>0,0,, f ( x ) = { 1 θ e − x θ , x > 0 , 0 , 其 他 ,

其中 θ>0 θ > 0 为常数,则称 X X 服从参数为 θ 的指数分布。
指数分布的一个重要性质是无记忆性,即服从指数分布的随机变量 X X 对于任意 s,t>0

P{X>s+t|X>s}=P{X>t}. P { X > s + t | X > s } = P { X > t } .

就是说有一个灯泡在用了 s s 小时后继续使用 t 小时坏的概率和这个灯泡从开始使用算起就只用了 t t 小时就坏了的概率是一样的。

(2) 正太分布

正太分布(记为 XN(μ,σ2))的随机变量 X X 的概率密度为

f(x)=12πσe(xμ)22σ2,<x<+

对于任意一个正态分布,它都可以通过一个简单的线性变换化为标准正太分布(即 μ=0,σ=1 μ = 0 , σ = 1 的正态分布)。


随机变量的函数分布

设随机变量 X X 具有概率密度

fx(x)={x8,0<x<4,0,.

求随机变量 Y=2X+8 Y = 2 X + 8 的概率密度.

FY(y)=P{Yy}=P{2X+8y}=P{Xy82}=Fx(y82). F Y ( y ) = P { Y ≤ y } = P { 2 X + 8 ≤ y } = P { X ≤ y − 8 2 } = F x ( y − 8 2 ) .

fY(y)=fx(y82)(y82)={18(y82)12,0<y82<4,0,.={y832,8<y<16,0,. f Y ( y ) = f x ( y − 8 2 ) ( y − 8 2 ) ′ = { 1 8 ( y − 8 2 ) 1 2 , 0 < y − 8 2 < 4 , 0 , 其 他 . = { y − 8 32 , 8 < y < 16 , 0 , 其 他 .

也就是说对于随机变量 X X ,如果存在随机变量 Y=g(X),g(x),则随机变量 Y Y 的概率密度为

fY(y)={fx(h(y))[h(y)],α<y<β,0,.

其中 α=min{g(),g()} α = m i n { g ( − ∞ ) , g ( ∞ ) } β=max{g(),g()} β = m a x { g ( − ∞ ) , g ( ∞ ) } h(y)g(x) h ( y ) 是 g ( x ) 的 反 函 数

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值