逻辑回归模型中的回归系数的正负性符号的理解

本文探讨了WOE编码方式在逻辑回归模型中的应用,详细解释了如何通过WOE值判断特征与正负样本的关系,以及如何根据回归系数符号判断模型预测目标方向。并讨论了在风控场景下,如何确保模型预测的负样本概率与业务理解一致。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

WOE编码方式:

逻辑回归的线性公式可以表示为:Ln(p/(1-p)) =β0 +β1*x1 +β2*x2 +β3*x3 +...+βn*xn

其中,P是逻辑回归模型预测的负样本概率,Xn表示经过WOE编码后的特征,在风控场景下当概率P表示负样本出现的概率时,Ln(P/(1-P)表示的是负样本概率与正样本概率之比,因此假如当WOE公式是由上图中给出的形式,即每个bin下的正样本占全局正样本比值(Gi/Gt) 除以 该bin下 负样本占全局负样本的比值(Bi/Bt),那么该bin的WOE值大于0时,表明该bin更容易集中正样本,出现负样本的概率更小,所以WOE的计算方式与逻辑回归的预测目标方向相反,因此线性公式中的回归系数符号应该为负,但是如果WOE的表达式与上图中的表达式相反,即WOE的计算方式是bin下 负样本占全局负样本的比值(Bi/Bt)除以 该bin下的正样本占全局正样本比值(Gi/Gt),那么WOE计算方式与预测目标是正向的,此时回归系数符号应该为正。因此我们在逻辑回归模型筛选变量的过程中,需要去观察回归模型的系数变量符号是否满足要求,而且都一致,假如回归系数符号应该为负,但此时个别特征的系数出现了正符号,这种情况下说明 现有的特征体系中可能还存在着多重共线性的问题。

  上图中实际的逻辑回归模型预测的P表示的是负样本的概率

如果定义woe是好比坏的话,   须要求logistic回归系数为负,确保风险趋势与业务理解一致

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值