状态空间模型(离散)-隐马尔可夫模型数学原理

本文介绍了离散状态空间模型——隐马尔可夫模型(HMM),探讨其在股票预测和NLP领域的应用。内容包括状态转移矩阵和测度分布矩阵的数学描述,以及HMM的基本参数、评估模型(Forward-Backward算法)和参数学习模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hidden Markov Model, HMM.是动态序列模型-离散情况的代表模型。在股票预测和NLP领域都有良好的应用,如:

1. Hidden Markov Model - in Mathmatics

  • 状态转移矩阵 Transition Probability (以股市运转为例)

  • 测度分布矩阵 Measurement Probability(以股市运转为例)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值