论文全名:FCNet: A Convolutional Neural Network for Calculating Functional Connectivity from Functional MRI
英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用
目录
2.3.2. Functional Connectivity Through FCNet
2.3.3. Feature Selection and Classification
1. 省流版
1.1. 心得
(1)FC时间上相关的啊,意思空间相关不能叫FC咯?确实,想想也不是没道理,fmri本来就是功能影像(时间),smri才是结构(空间)
(2)很久没看到语言上这么奇怪的论文了,怎么感觉和我不是一个世界的人
(3)以前古早的可视化确实做的不是那么好,可以添加颜色捏
1.2. 论文总结图
2. 论文逐段精读
2.1. Abstract
①Traditional correlation and distance measures are essential for machine learning in fMRI technique. However, these method may not caputure precise time series feature
②Thus, the authors put forward FCNet, which extract functional connectivity (FC) from time signals directly
③They aim to classify ADHD and HC
2.2. Introduction
①FC presents the pair-wise temporal correlation of each brain regions
②⭐The approaches of FC constructions are correlation, clustering, graph based etc...
③The overall framework of FCNet:
(a) Train FCNet by data, which generated by generator;
(b) Generating FC by FCNet, selecting features and connecting them with phenotypic data. Then training SVM
(c) Classifying by SVM
(我天这段话..怎么...有那么点...绕口...)
2.3. Method
2.3.1. Data and Preprocessing
①Dataset: ADHD-200
②Sites: NeuroImage (NI), New York University Medical Center (NYU) and Peking University (Peking)
③Atlas: automated anatomical labelling atlas (AAL) 90
2.3.2. Functional Connectivity Through FCNet
①FCNet is a deep-network architecture
②The architecture of FCNet:
(1)The Feature Extractor Network
①Activate function: Leaky Rectified Linear Unit (ReLU), cuz it converges faster than ReLU
②Length of time-series signal: 172
③Pool length in pooling layer: 2
④Kernal size: 3
⑤Filters of C 1-5: 32, 64, 96, 64, 64
⑥The size of the last fully connected layer (purple blocks): 32
(2)The Similarity Measure Network
①Extracting correlation by neural network
②The essence of building relevance is to utilize similarity
③The last layer contains a Softmax
(3)Coupled Architecture with Shared Parameters
①They share the parameters in the coupled structure(呃呃为什么要写得这么抽象,所以意思是图上两根蓝线是一个人的两个ROI吗?)
(4)Data Generator for Training FCNet
①⭐They need similar regions, which means functionally connected and dissimilar regions, which means not connected functionally. Labelling similar one with 1, dissimilar one with 0(救命...这是什么)
②Labelling 1 to ROIs with the same communities and 0 with dissimilar communities
③The specific algorithm:
(5)Training of FCNet
①Loss function: cross-entropy
where denotes the number of training samples, , denotes the predicted result
2.3.3. Feature Selection and Classification
①Feature selection: Elastic Net (EN) based
②EN combines and penalty that brings variable selection and continuous shrinkage and encourages grouped selection of features
③Defining as the vector of subjects and , the cost function will be:
where are weights;
needs to be calculated
2.4. Experiments and Results
①Classes: HC and ADHD (combined with ADHD combined, ADHD hyperactive-impulsive and ADHD inattentive)
②The model proposed by the authors outperforms all other models in the competition. And for datasets from different sites, the parameters in their frameworks remain unchanged.
③Comparisons in competition:
④Validation of phenotype data usage:
⑤Visualization of FC comparison between HC and ADHD on Peking site:
2.5. Conclusion
阐述了一下它究竟有多么复杂
3. Reference List
Riaz, A. et al. (2017) 'FCNet: A Convolutional Neural Network for Calculating Functional Connectivity from Functional MRI', Medical Image Computing and Computer Assisted Intervention Society (MICCAI): Connectomics in NeuroImaging (CNI). doi: 10.1007/978-3-319-67159-8_9