区间DP

区间DP

在一个区间上的动态规划,主要思想就是先在小区间上进行动态规划得到最优解,然后再利用小区间的最优解合并求大区间的最优解。

解题模板

for length in range(2,n+1):       #区间长度
    for i in range(n-length+1):   #区间起点,由于j的值不应该大于n,则可以确定i的范围
        j = i + length -1         #区间终点
        for k in range(i,j):      #划分区间
            dp[i][j] = max/min()  #转移方程

经典例题

1.最长回文子序列

题目:给定一个字符串s,找到其中最长的回文子序列。可以假设s的长度为1000.
示例1:
输入:‘bbbab’
输出:4
示例二:
输入:‘cbbd’
输出:2

解析

回文子序列p两种情况:

  • 长度为1的时候,只有一个字母
  • 长度大于1的时候,p[0] == p[len(S)-1]

初始化dp

  • dp = [[0] * n for _ in range(n)]
  • dp[0][0] = dp[1][1] = … = dp[n-1][n-1] = 1

状态转移方程:

  • 对于一个子序列,起始点终止点分别为i、j,则dp[i][j]表示字符串中从i到j最大的回文子序列的长度,可知dp[i][j] = max(dp[i+1][j],dp[i][j-1])
  • 当s[i] == s[j]时,dp[i][j] = dp[i+1][j-1]+2
class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        n = len(s)
        dp = [[0]*n for _ in range(n)]
        for i in range(n):
            dp[i][i] = 1
        for length in range(2,n+1):
            for i in range(n-length + 1):
                j = i + length - 1
                dp[i][j] = max(dp[i+1][j],dp[i][j-1])
                if s[i] == s[j]:
                    dp[i][j] = dp[i+1][j-1]+2
        return dp[0][n-1]

2.将字符串转换为回文串的最小操作数

题目:给定一个字符串s每一次操作你都可以在字符串的任意位置插入任意字符。请你返回让s成为回文串最少的操作次数。
示例1:
输入:s=‘zzazz’’
输出:0
示例2:
输入:s=‘mbadm’
输出:2
示例3:
输入: s= ‘leetcode’
输出:5

解析

dp[i][j]表示使字符串s从i到j成为回文串的最小操作数。

  • 如果s[i] == s[j],则无需进行操作,dp[i][j]=dp[i+1][j-1]

  • 若s[i]!=s[j],则有两种操作方法,在i左边插入s[j]或者在s[j]右边插入s[i]

根据上述两种情况即可写出状态转移方程

dp[i][j] = min(dp[i][j],dp[i+1][j-1])    s[i] == s[j]
dp[i][j] = min(dp[i+1][j],dp[i][j-1])+1  s[i] != s[j]
class Solution:
    def minInsertions(self, s: str) -> int:
        n = len(s)
        dp = [[0] * n for _ in range(n)]#初始化
        for span in range(2,n+1):#回文串的长度
            for i in range(n-span+1):#起始点
                j = i + span - 1#终止点
                print(i,j)
                dp[i][j] = min(dp[i+1][j],dp[i][j-1])+1
                if s[i] == s[j]:
                    dp[i][j] = min(dp[i][j],dp[i+1][j-1])
                print(dp)
        return dp[0][n-1]

3.石子合并(直线版)

题目:有N堆石子排成一排,每堆石子有一定的数量,现要将N堆石子合并成为一堆。合并的过程每次只能将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值.
示例:
输入:3
1 2 3
输出:7

解析

假设有8堆石子,合并这八堆石子,有7不同种方法,如下图
在这里插入图片描述
dp[i][j]表示合并从i堆石子到j堆石子所需要花费的最小代价,合并石子是可以先将从i至k堆石子合并为一堆A,最小花费为dp[i][k],然后合并k+1至j堆石子为B,最小花费为dp[k+1][j],最后合并A,B堆石子,得到dp[i][j].
则状态转移方程为:dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]+sum(nums[i:j+1]))

class Solution:
    def stonemerge(self,n,nums):
        dp = [[0]*(n) for _ in range(n)]
        for span in range(2,n+1):
            for i in range(0,n-span+1):
                j = i + span - 1
                dp[i][j] = float('inf')
                for k in range(i,j):
                    dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]+sum(nums[i:j+1]))
        print(dp[0][n-1])

4.环形石子合并

题目:有N堆石子排成一个圆环,每堆石子有一定的数量,现要将N堆石子合并成为一堆。合并的过程每次只能将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值和最大值
示例:
输入:4
4 5 9 4
输出:43 54

解析

因为是环形的,所以合并i,j的方法可能存在下述情况,所以将石堆扩展为两个相同的石堆并排排序,则可以考虑到环形中的情况:
在这里插入图片描述
之后的操作和直线排序情况相同。

class Solution:
    def stonemerge(self,n,nums):
        nums.extend(nums)
        dp = [[0]*(2*n) for _ in range(2*n)]
        dp2 = [[0]*(2*n) for _ in range(2*n)]
        for span in range(2,2*n+1):
            for i in range(0,2*n-span+1):
                j = i + span - 1
                dp[i][j] = float('inf')
                dp2[i][j] = float('-inf')
                for k in range(i,j):
                    dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]+sum(nums[i:j+1]))
                    dp2[i][j] = max(dp2[i][j], dp2[i][k] + dp2[k + 1][j] + sum(nums[i:j + 1]))
        ##环形石堆,所以要循环找最大最小值
        minl = float('inf')
        maxl = 0
        for i in range(n):
            maxl = max(maxl, dp2[i][i + n - 1])
            minl = min(minl, dp[i][i + n - 1])
        print(minl,maxl)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值