About Math
文章平均质量分 73
Sherryllll
这个作者很懒,什么都没留下…
展开
-
SVD奇异值分解
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值转载 2015-01-23 10:37:56 · 948 阅读 · 0 评论 -
协方差矩阵
要理解协方差矩阵,我们从以下几个步骤来说 方差——>协方差——>协方差矩阵。这样更能理解它的由来和意义,本文主要讲意义和python里的使用,其实协方差矩阵有很强的实际意义和应用实例,有机会再补充。方差在概率论中我们学过期望和方差的概念。 期望 参见wiki中的数学定义如下: 方差 一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。 方差的算术平方根称为该随机变量的标原创 2015-09-26 23:17:40 · 5393 阅读 · 0 评论 -
Linear Algebra线性代数相关
特征向量和特征值(eigenvector and eigenvalue)维基百科-特征向量 在数学上,特别是线性代数中,对于一个给定的线性变换 A\mathbf A ,它的特征向量(eigenvector,也译固有向量或本征向量) v\mathbf v 经过这个线性变换之后,得到的新向量仍然与原来的 v\mathbf v 保持在同一条直线上(平行),但其长度或方向也许会改变。即 Av=λv\m原创 2015-09-19 01:03:21 · 933 阅读 · 0 评论 -
最优化方法小结
概述最优化问题的一般数学模型: min f(x)min\ f(\mathbf x) s.t. hi(x)=0,i=1,...,m;s.t. \ h_i(\mathbf x) = 0,\quad i=1,...,m; gj(x)≥0,j=1,...,p.\qquad g_j(\mathbf x)\ge0, \quad j=1,...,p.其中x\mathbf x是n维向量,在实际问题中也被叫原创 2016-12-21 11:31:40 · 9613 阅读 · 0 评论